

DOCUMENT RESUME

ED 243 471 . . ¢ IR_O%l 096
AUTHOR Martin, Roger J.; Osborne, Wilma M. - 8
TITLE Guidance on Software Maintenance. Final Report.
Reports on Computer Science and Technology.

INSTITUTION National Bureau of Standards (DOC), Washington, D.C.

: Inst. for Computer Sc1ences and Technology.
REPORT NO NBS-SP-500-106 ~
PUB DATE Dec 83 : o, ;
NOTE 78p.

AVAILABLE FROM Superintendent of Documents, U.S. Government Printing?
Office, Washington, D.C. 20402,

P

PUB TYPE Guides - Non-Classroom Use (055)
EDRS PRICE ~ MF01/PCO4 Plus Postage. |
. DESCRIPTORS *Administrative Problems; *Change Strategies;

*Computer Software; Decision Making; Guidelines;

Information’ Systems' Policy Formation; Program

Administration; *Program Improvement; *Programihg
IDENTIFIERS *Management Control“‘*Software Maintenance

ABSTRACT ‘

Based on 1n£ormal discussions with personnel at
selected federal agencies and private sector: organ1zat1ons and on
additional research, this publication .addresse$s issues and problems
of software maintenance and suggests actions and procedures which can
help software maintenance organizations meet the. grow1ng demands of .
maintaining existing systems. ‘Software ma1ntenance is defined as the
performance of perfective, .adaptive, and corrective maintenance
activities required to keep a software 'system operational and
responsive after it is accepted and placed into production. The
software maintenance process ‘and the qualities of an ideal maintainer
are briefly outlined. Also discussed are factors to be weighed when
deciding on system maintenance or redesign, control of software
changes, and the improvement of software maintenance as a result of
the policies, standards, procedures, and techniques instituted and
enforced by management. Software maintenance tools, or computer .
programs that .can be useful in maintaining other computer programs
and their documentat1on, are described. In a final section on
management, emphasis is placed on the need for strong, effect1ve,§
technical management control-of the software maintenance process. An
80-item bibliography and examples of software maintenance definitions
found in other publications are provided. (Author/ESR)

\

P R R R I R L I s It I I IIII Y

* Reproductions supplied by EDRS are the best that can be made *

* - from the original document. *
t***

Aruitoxt provided by Eic:

.+ 7. NBSSpecial Publication 500-106 -

ED243471

P

U.S. Department

-of ?ommerce. | _r : COmpUterSCience
National Bureau and TeChnOIOgy -

of Standards

~~ _Guidance on
... - "Software o
 Maintenance = |

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION -

s - CENTER (ERIC)
+.]')ns document has been reproduced as
received from the person or organization .
onginating 1t f

Minor changes have been r,nade to imprave
reproduction quality.

7 P

- .
& Paints of view or opminh:s stated in this docu- - #
ment do not necessarily represent official NIE
position or palicy. ' ’

¢ ‘
~

.

o NATIONAL BUREAU OF STANDARDS

The Nq'lionul Bureau of Slund’urd's“ was established.by.an act of Congress on March 3, 1901,
The Bureau's overall goal is o strengthen and advance the Nation’s science and technology
~and facilitate their effective application for public benefit. To this.end, the Bureau conducts
rescarch and provides: (1) a basis for the Nation's physical measurement system, (2) scientilic
and technological sefvices for industry and government, (3) a technical basis tor equity in
trade, and (4) technical services to promoie public safety. The Bureau's technical work is per-
) i formed by the National Measurement Laboratory, the National Engineering Laboralory, and
the Institute 1or (,ompulcr Sciences dnd Technology.

) "l'l*H:\"NATlONAL MEASUREMENT LABORATORY provides the national system of

ﬁh\\s‘iail and chemical and materials measurement; coordinates the system with measurement
) u,ms of olhcr nations-and furnishes essential services leading to accurate and uniform,

v, p ysical and chemical measureiment lhrou)_.houl the Nation’sacientitic community, industry,

o and commeree; conducts materials research leading to lmprovcd methods of meuasurement,
standards, and d.xl.x on the properties of materials needed by industry, commerce, educational
msnluuons. angl, (;ovc,rnmc,nl provides advisory and research services to other Government
) agencies; Qch,lops. produces, and distributes Standard Reference Materials; and provides

.. - “calibration services. The Laboratory consists of the following centers:

Absolute” Physical Quantities® — Radiation Rescarch — Chemical Physics —
Analytical Chemistry — Malerials Science

- THENATIONAL ENGINEERING LABORATORY provides technology and technical ser-
vices to the public and privale sectors to address national needs and to solve national -
- : problems; conducts research in'cng_inccring and applied science in support of these etforts;
+ builds “and maintains competence in the necessary disciplines required to carry out this |
, research and technical service; develops engineering dala and measurement capabilities;
provides engineering meuasurement traceabilily services; develops lest methods and proposes
engineering standards and code changes; develops and proposes new engineering practices;
and develops and improves mechanisms to transfer results of its research to the ultimate user.
. The Laboratory consists of the I'o!lowing_ccnlcrs: .
/\ppll(.d Mathematics - Elcclrumcs dnd Electrical Engineering? — Manufacturing
- Engineering - Bunldmg, luhnolog,) - Fire Research -- Chemical Engmcermg-

1

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOCY conducts
. rescarch und'provides scientific and technical services to aid Federal agencies in the selection,
acquisition, application, and use| of computer lechnology lo improve elfectiveness and
economy in Government opcrallo?s in accordance with Public Law 89-306 (40 U. §.C. 759),
relevant Executive Ordcrs and other directives; mrrlcs oul this missian by managing the
Federal Information . Processing glanddrds Program developing Federal -ADP standards’
gujdelines,” and managing Federal | p..ll’llClp..lllOn. in ADP voluntary standardization activities;
pmvndu scientific und technological advisory services.and ussistance to Federal agencies; and
*provides the technical foundation!/for computer-related pohcncs of lhc Federal Government.
The Institute consists of the fol wing centers: - '

Progrumming Scicncc and“Technology — Computer Syslcms,. Engineering. .

-+ ‘Headquarters and Laboratories at Gdithersbu'rg, MD unless otherwise noted:
: mailing address Washipgton, DC 20234, -
*Some divisions within] the center ar¢ located at Boulder, CO 80303,

o

O ’ L

Aruitoxt provided by Eic:

' "Computer Science’

o . and Technology -

NBS Special Publication 500-106

| ~

Guidance on -
Software Maintenance

< ¥
»

v, -~
o . : , - , ‘.
[T . Roger J. Martin and Wima M. Osbornie
Centgzr for Programming Science and Technology . |
' - Instifute for Computer Sciences and Technology -
: - National Bureau of Standards
-; ' Washington, DC 20234 T
‘@
?

- ' ' ' ﬁ. . f
:QQ“‘ \l\; . o‘ﬁ.’ﬂ .- ’] ‘
oo R -
‘ 7’,'(‘ "‘e' . ‘ .. t . \ ' .
“ | Reay ot - ! }) l\ . J
AN . » U.S. DEPARTMENT OF COMMERCE
Q Malcolm Baldrige, Secretary L
.) . National Bureau of Standards
~ Ernest.Ambler, Director -

.7 Issued December 1983

PRI

The National Bureau of Standards hes'&sBecial responsrbrlrty within the Federal

Government.for computer science and technology activities. The programs of the . 4
NBS Institute for Computét Sciences and Technology are desrgned to provide ADP
“standards, guidelines, and technicat adyisory services to improve the eftectiveness -
of computer utilization in the Federat eclor, and to pertorm appropriate research

.. and development etfforts as foundation for such .activities and programs. This

o publication series will report these NBS efforts to the Federal computer community.as
well as to interested specialists in the academic and private sectors. Those wishing vy
to receive notices of pu\rcatrons in this,series should complete and return, the form
at the end of this publication. J) ~”

o : v

\ \

P

National Bureau of Standards-Special Publication 500-106° = *
o Natl. Bur. Stand. (U.S.), Spec. Pybl. 500- 106, 74 pages (Dec 1983)

CODEN XNBSAV

EEAN
o

a Library of Congress Catalog Card Number: 83-600611 |

o

U.S. GOVERNMENT P‘RINTI‘NG OPFFICE
WASHINGTON: 1983

.

For sale by the Superrntendent of Documents, U.S. Government Printing Offrce Washrngton DC 20402 .
Price
' . © (Add 25 percent for other than U.S. mailing)

\)4" - v - . ’ ‘ 5

' TR Y. i o ¥ , "
¥ . I -
. . ‘_ & s : . 1 -
. . . 3 -". .
'+ . TABLE OF CONTENTS - ‘) .
Y 4 ’ .) Y N
b Ay : Page :
: 3) 3 N :g‘ ; -
1.0° BACKGRDUND....... B T Seesear A el -2
/ | ' ‘ RN
.)) &y - A -
1A Introductlon IR I IR S R, SR 3 2
v - C
2.0 DEFINITION og SOFTNIARE MAINTENANCE.F. e e 6
. g\ o . . w,
2.1 Functional Def1n1t10n R PR LA
. Lo o
. 2.1.1 Perfective malntenance S ieves T
2.1.2 Adaptive maintenance.,........ ettt 8
.2.1.3 Corrective maintenance....... e e teesaenae w2 9.
3.0 THE SOFTWARE MAINTENANCE PROCESS......iiiiiiiiiiiinias, 10
4.9' SOFTMA&E MAINTENANCE PROBLEMS teeeo 12
N.1 SoftwareiQuallty S 12
; '5.1.1 Poor software design...)...uieiieerennnnennnns 12
b "U51.2 PoOrly coded SOFEWare..ueeeeeeeeeeeeeennnennnns 13
- 4.1.3 Software designed for outdated hardware 13
B b.1.4 Lack of common data definitions..........vvunn. 14
\(\ b.1.5° More than one programming language used........ 14
4.1.6 Increasing inventory.......eeeee.. et s et et eeenn 14
4.1.7 Excessive resource requirements................ 14
1 L ' P .
4.2 Documentation............ c ettt eemeses 15
\ - ‘ "
B3 USersS.cieeeeeceeseeennns s s e s e saseceeceveeeaecnanes 16
4,4 Personnel............ Ceeean \ e 16
5.0 THE IDEAL MAINTAINER......... e, P 18
l.l ! .
6.0° SYSTEM MAINTENANCE Vs SYSTEM REDESIGN........, ve. 20
6.1 Frequent System Fallures SRIIT EEEE R I 21
6.2 Code Over. Seven Yearsiold.... e e e ceneeas 21
. 6.3 ’Overly Complex ProgramiStructure And Logic Flow.... 22
6.4 Code'Nritten For Pfevioua‘Generation Hardware...... 5}
6.5 Running In Emulation Mode......... ettt 23
6.6 Very Large Modules Or Unit -Subroutines...... teeeeen 23
o .
. iii
Q 8 g . : .

g

. S .
' 6.9 Difficulty In Keeping Maintainers............ e 24
;f 6.10 Seriously Deficient Documentation........ e 24
h.& .) . .
6.11 Missing Or Incomplete'Design Specifications........ 25
7.0 CONTROLLING SOFTWARE CHANGES........ U e . 26
7.1 Controlling PerfectiVe Maintenance..... v ce.. 27
7;2\\Qontrolliﬁg Adaptive Maintenance......... e eeneenns 28
T.3: Cohtrolling Corrective Maintenagpe.;., 30
.0 IMPROVING SOFTWARE MAINTENANCE......z 31
8.1 Source Code Guidelines.......... e eeeeee e weees 32
8.1.1 Use a single high-order language......... ceee . 32
8.1.2 Coding conventionsS......cceeeeeenes W eeseeseseenes 32
8.1.3 StrﬁngfEH?xmodular SOftWare. .oeeeees R 34
8.1.4 Standard data definitions.......cccevvieccecene 35
. 8.1.5 yell-commented-code...J e ve. 35
8.1.6 Avoid compiler extensions........cceceee weeves 36
8.2 Documentation GuidelineS......®..eeeeeeeeenns veeews 36
8.§. Coding And Review Techniques...... Ceeeeain e 38
.8.3 1 Top down/bottom up approach............... ‘eren. 38
§.3.2 Peer revienWS....ceeecscccscosenccncs PRI « 39
8.3.3 Walkthroughs....i........ R R 39
8.3.4 Chief programmer team......cccceeveeees [40
8.4 Change Control........ e e eeeens eedeaeeens ceeenn 41
8.4.1 Change requUest...ceeeceeeceasoasasons ~..f.......;,41
8.4.2 Code audit......eceveeens R TR R RPN 42
8.4.3- Reéview and approval.v.ceceeesoss ‘..‘ 42
8.5 Testing Standards And Procedures...... Cerenonens V..o43
IR y v 7
/J /_\) B R .

*

" Page
6.7 Excessive Resource Requirements.......... e et e es e 23

6.8 Hard Coded Pardmeters Which Are Subject To Change.. 24

L

9.0 ,SoﬁTWARE MAINTENKNCE TOOLS...... 7..{...;..,..;2,..3 by

9.1 ‘Cross’Referencer.: Ceeeeeaen ': ;. 45

9.2 ;Comparatofs;......;ﬁ....,l' ,..; R 35

9.3 -Piagnostic- Routines.;3..{..}:,..:};... 45

9.4 AppllCatlon Ut111ty lerarles e L.::;......, u%

9.5 On- Ilne Documentatlon lerarles ‘...f.... 7

9;6 On*llne/Interactlve Change And D?bug Fa0111t1es Qi

9:7 Generatlon And Retentlon’Of Test\Data 48

{0.0 MANAGING SOFTWARE.MAINTENANCE......... :\; ;.}t;..;..‘49

10.1 Goals Of Software Maintenaﬁce Managemeng...;; 50

10 2 Establlsh A Software Malntenance Pollcy...; wee 51
10.2.1 Rev1ew and evaluate a11 requests for changes 53

10.2.2 Plan for, and schedule mainfenance............ 54

10.2.3 Restrict code changes to the approved work. 54

- 10.2.4 Enforce coding and documentatlon standards. _54

10.3 Staffing And Management Oof Malntenance Personnel. ‘55

11.0 _SUMMARY.'.'...".....;.._..'.....,.V..';...' [ERTETTTTpp 58

BIBL}IOGRAPHY........., ’ 59
*APPENDIX I : Software Maintenahée'Definitiohs ;.. 65 '

B . ‘. !
i
}
/
- Y .
, »

. ‘ K RV "Page
Coy . r \ ¢

Table
3Téble
. Table

Table
Table
. Table

Table
Table
* Table
Table

Table

Table‘

"Table

= W

10
11

12

3

*}

LIST OF TABLES
+

N
LY

‘nge
Software Maintenahce ProblemsS...veeeeneencenesss B
Functional Definition of'Software Maintenance... 7
Software Maintenance Erocess.....f.......n...... 10

Characteristics of Systems Which Are
Candidates for Redesign.......ocveveececncaceces 20

Suggested Policies for Controlling »
Software Changes.....oceveuneinrnennraanenennns 26

Factors Which Affect Source Coae. :
Maintainability‘.l.lIll'llllll-l‘lllll.\lklllllllll'll 31

Documentation GUIidANCe...eepeeessseesnesesssees 30

COding and Review TeChniqueS. ‘llll.llllllll;llll 38

. . E) -
Controlling ChangesS....eveeeseeeesecesssnnanssas U1

Software Maintenance TOOlS...ceeeseecooseenssssss Ud

!

Goals of Software Maintenance........ceceevseees 51
Establishing a Software' Maintenance Policy...... 53

Managing the Software Maintenance Function..:... 57

L J

@N,

vi : - g

O

: _ Guidance On Software Maintenance
. |] -) P
Roger J. Martin and Wilma M. Osborne

.

This report addresses issues and problems of softﬁbre
maintenance and suggests actions and procedures which
can help software maintenance organizations meet the
growing demands of maiptaining existing systems. The
report establishes a wofking definition for software
maintenance and presents an overview of current
problems and - issues 1in that area, Tools and
\ techniques that may be used to improve the control of

software maintenance activities and the, productivity

of a software maintenance organization are discussed..

Emphasis is placed on the need for strong, .effective

technical management conﬁrol of ' the software
- maintenance process.:- o ’
: .o 8 > <
Key words’: adaptive maintenance; corrective
maintenance; management; perfective maintenance;

software englneérlng, software maintenance; software
maintenance management _software maintenance tools.
4\

»

L~

ERIC T R -

g -

1.0 BACKGROUND R

The Institute for Computer Sciences and Technology (ICST),
within the National Bureau »of ' Standards (NBS), has a
responsibility wunder Public Law 89-306 (Brooks Act) to

promote cost effective selection, acquisition, and
utilization of automatic data processing resources within the
Federal Government. ICST efforts include research in

computer science and technology, direct technical assistance,
and the development of standards and guidelines for data
processing equipment, practices, and. software. As part of
this responsibility and the growing need to improve software
maintenance methods and management, the ICST 1is- developing
software maintenance guidance designed to assist Federal
agencies in the ongoing support of existing computer systems.
While software systems vary in function, type, and size, many
of the_func?@ons performed under software maintenance are
universal n scope and the activities required to keep them
operational are generally the same. This is the first in a
series of reports which address both the management and
technical bractlces, procedures, and .methods for software
maintenance.

" This report provides general guidance for managing software
maintenance efforts. -It presents an overview of the various

' aspects and problems of software maintenance, and identifies
those techniques and procedures designed to assist management

in controlling and performing software maintenance. It
addresses the need for a maintenance policy with enforceable
controls for use throughout the software life cycle. The

undgrlying theme is that improvements in “the area of software

maintenance will come primarily as a result of the software

maintenance *p011c1es, standards, procedures, and techniques
~ instituted and enforced by management.

1.1 Introduction

There is a growing interest . in (software maintenance as,
evidenced by the number 'of articles, reports, and textbooks
© on the_subject (5ee Bibliography). This - interest has been
spurred by est1mates that more resources are required to
maintain existing 'systems than to deve€lop. new ones. Federal
managers respofisible for software application systems
estimate that % to 70% of the total application .software
resources are spent on software maintenance [GAO81a] [GAO8OT

Two of the major causes Of this software maintenance burden
are the . growth of the inventory of software Yhich must be
maintained and the failure to adopt and wutilize improved
technical and management methods and tools. The issue which

=
.
-2 - .

o o - 1]

.. . B i - . (/

.-

must be addressed is not one of reducing th'e absolute cost of
software maintenance, but rathér improving the quality. and

effectiveness of software maintenance and thus, réducing the

relative or incremental costs.

In order to improve the .quality and effectiveness, it is
necessary to not ° only improve software maintenance .

techniques, methodologies, and tools, -but to also -improve the

management of software maintenance. This Guide discusses-the

problems associated with managing software .maintenance and

- software maintainers, and examines management methods which °

-

can reduce those problems. ’

Informal discussions were held with selected Federal agencies
and . private sector organizations to gain a better
understanding of the current state of "software’ maintenance.
These ' discussions provided background information on ‘current
practices; procedures, and policies relating to software
maintenance. . This information, along with .additional
research, is the basis for this report. * :

The major-tOpib_areas-addressgd in these discussions were:
1. Definition of software maintenance.

2. Methdds,and techniqués in céordinating éndn
pérforming software maintenance. 3

3. Majof'maintenaﬁce problehs.
4. Types of applications being gnaintained.

5. Developmental \history of existing’softwgfe.

.

6 Maintenange staff profiles.

7. Management bf_mainténande activities.

8. Utilization of maintenance tools. . .,
It was expected that there would be‘some commonality in " the
information provided by these discussions. 1In fact, while
Jeach organization has problems peculiar -to its environment,
there was an extremely high ‘degree of consistency. in the
comments made and ‘the problems cited. - : .

The primary difficulties and deficiencies encountered 1in
software maintenance fall into several categories:. software
quality, environment, management, uségs, - and personnel.
Specific problems which were consistently. mentioned are
listed in Tab;sq}. - ') '

-

-

" Software program quality
53- software design
'~ software coding
. . - software documentation
’ © - programming languages used

\

.'. ' - lack of common data definitions

- increasing inventery
--excessive resource requirements

Environment - growth .
: : - evolving/change
- new hardware

4

Management - maintenance controls,
' - maintenance techniques and procedures
- maintenance tool usage
.- standards enforcement *

Users o ‘- demanding more capabilities
-Personnel - - lack of experience .
: - image/morale problems

- view of maintenance:
unchallenging,unrewarding

— ey o ———————————— = = = m = e e e e e e e = e e e S e e e e e e =

Ag can be.geen from the table, there dre both technical and
‘management- problems. =~ It appears, however, that many of the

. technical problems " are often the result of ‘inadequate
" management control over the software maintenance process.
" These problems arise for at least two different reasons.

First of ~all, there 1is a great deal of code which was not
developed wlth maintenance "in mind. Indeed, the emphasis has

~often . been ,to get the _program up and running without being

"hlndcred" by gu1de11nes methodologies, or other controls.
The uecond reasona¥s, that gver the life.cycle of a software
system;. the code & d loglc which may have been well-designed
and 1mplemented\ ;6ften deteriorate due to an endless

T succession. of’ "QUle fixes" and .patches which are neither

well- deulpﬁed nor well-documented. Thus, in today's vast
1nvcntory of dpp11Cdt10n aystemu, ‘there, are many programs
which.” at - the time of their - development were considered
"state-of-the-art," but today are, in fact, virtually
unmaintainable, -

’ v

‘.;/. _~” - ’.‘i' | 1:3

, - . -

The need to maintain old, outdated, poorly documehted‘systems:
'was consistently cited as a -primary problem in software’
maintenance. «- There appears. to have been some improvement in:

.~ the quality of software over the last four to five years.

These improvements, however, have come mainly . on an
individual basis where a programmer, analyst, or line manager. .-
has introduced dne or more modern programming practices (e.g.
structured code, top-down design and development, peer
review). There usually has not been a systematic adoption of
these practices at a higher level within an agency. Nor has
there been extensive institutional introduction of standards
and guidelines for software development and maintenance.

Sections 1.0 through 6.0 address the definitions and problems
-0f software maintenance. These sections present an overview
of the software maintenance process and discuss the . primary
technical and management software maintenance 1issues.
Sections 7.0 through 10.0 address how to control and improve
software maintenance through the adoption or use of various
policies, techniques, and tools. - :

14

2.0 DEFINITION OF SOFTWARE MAINTENANCE ' o ¢
Software maintenance is a commonly "understood" term for
which there is no single definition. ' This lack of a standard
definition often results in confusion for those attempting to ,

! address . the problems of software maintenance. Some examples
of software maintenance definitions are included in Appendix
I. The following definition of software maintenance is used
throughout this report.

Software maintenance is the performance . gﬁ those
activities required to keep a software’ system
operatlonal,and responsive after it is accepted and
g;l,acg ;[] Q gggguct_;;gn,

Software maintenance then, is the set of activities which
result in changes to the originally accepted (baseline):
product set. These changes consist of modifications created
by correcting, inserting, deleting, extending, and enhancing
the baseline system. Generally, these changes are made in
order to keep the system functioning 1in an evolving,
expanding user and operational environment. /

2.1 Functional Definition

Functionally, ‘software maintengnce activities can be divided
into three categories whichjf were originally proposed by
Swanson[SWAN76]1: perfective, %daptive, and corrective.

Many software managers consider requirements specification
charges and the addition of new capabilities to be software
maintenance. Although these areas were not addressed by
Swanson, -the definition of perfective maintenance has been
expanded to include them. The three maintenance categories
are defined in the following manner:)

Perfective maintenance’ includes .all changes, insertions,
deletions, modifications, extensions, and enhancements which
are made to a system to meet the evolving and/or expanding
needs of the user. '

Adaptive maintenance consists of any effort which is
‘initiated as a result of changes in the environment in which
‘a software system must operate. .
Corrective maintenance refers to changes necessitated by
actual errors (induced or residual "bugs") in a system.

-6 - | 15

Tébie 2 - Functional Definition éf
: ' Software Maintgnance

Perfective : changes, insertions,’

: " deletions,modifications,
extensions, and
enhancements

Adaptive : adapting the system Coe
to changes in the)
environment '

Corrective : fixing errors .,

2.1.1 Perfective maintenance

~

Perfective maintenance refers to enhanceme%ts made to improve
software performance, maintainability, or understandability.’
It is generally performed as a ‘result of .new or changing.
requirements, or in an attempt to augment-or fine tune the
software. Activities designed to make the code easier to.
understand and to work with, such as restructuring or
doéumentation updates (often referred to as ‘"preventive"
mainterance) are considered to be perfective. Optimization
of code to make it run faster or use storage more efficiently
is also included in the perfective category. Estimates
indicate that perfective maintenance-comprises approximately
60%-70% of all software maintenance efforts. ')

Perfective maintenance is required as a result .of both the
failures and successes of the original system. If the system
works well,- the wuser will want additional features and
capabilities. If the system works poorly, it must be fixed.
As requirements change and the user-. becomes more
sophisticated, ~there will be changes Tequested to make
functions éasier and/or clearer to use. Perfective

maintenance is the method usually employed to keep the system

"up-to-date", responsive and germane to the mission of the
organization. :

There is some disagreement whether the addition of new
capabilities should be considered maintenance or additional
development. Since it is.an expansion of the existing system
after it has Dbeen placed 1into operation, and is usually
performed by the same staff responsible for other . forms of

7‘
16

. v ¢
'

maintenance, it is appropriately classified as maintenance.

Fine tuning ex1st1ng systems to eliminate shortcomlngs and
1neff1c1enc1es and-to optimize the process is often referred
~-to as "preventlve ‘maintenance". It can have dramatic effects

on old, ‘poorly written systems both in terms of reduclng'j;

resource Trequirements, anpd 1in maklng the’ ,system more
maintainable' and ' thus, .easier to change or enhance.
Preventive maintenance may also include the study and
examination of :a system .prior to.occurrence of errors or
problems. . Fine - tuning 1is an excellent vehicle for
introducing the programmer to the€ code, while at -the same
t1me .reducing the likelihood of serious errors in the future.
. . [

2 1.2 Adaptive ma1nténance

Adaptive maintenance refers to molelcatlons made to a system
to satisfy or accomodate changes " in the . processing
environment. These environmental changes are normally beyond
the control of the software malntalner and consist prlmarlly
of changes to the: 5 Co

- rules, laws, and regulatlons that affect the system
- hardware conflguratlons, e.g., new terminals, local
. printers .)
- data formats, file structures .
-~ system software, e.g., operating systems, compilers,
utilities. :

Changes to rules, laws. ‘and regulations 'often require- the
performance. of adaptive maintenance on a system. These
changes must often be completed in a very short time frame in
order to meet the dates. established by the 1laws and
regulations, If rules and their actions are implemented
modularly, the —changes are relatively easy to install.
Otherwise, they can be a nightmare. .

Changes to the computer hardware (new terminals, local
printers, etc.) which support ‘the, application system are
usually performed to take advantage of new and/or improved

features which will benefit the user. They are normally

performed on a scheduled basis. The "usual goal of this
) maintenance is to improve the operation and response of the
* application system.: -

Changes to data formats and file- structures may require
extensive maintenance on a system if it was not properly
designed ahd implemented. If reading or writing of data is

5 isolated in specific modules, changes may have less impact.
If it is embedded throughout the code, the effort can become -
very lengthy and costly. -

- 8 - -

17

" . 'Changes to operating system software (compilers, utilities,
' etc.) can have varying effects on the existing application
systems These effects can range from requiring little or no
reprogrammlng, to simply recomplllng all of the source code,
to rewriting code which contains non- supported features of =&
language that are no longer ayailable under the new software.

Maintenance resulting (from changes 1in the ~requir:ements
specifications by the user, however, 1is considered to be
perfective, not adaptive, maintenance. ’

-
'

- 2.1.3 Corrective maintenance

Corrective maintenance consists of activities -+ normally
considered to be error correction required to keep the system
operational. By 1its nature, corrective maintenance is
‘usually a reactive process where an error must be fixed’
1mmed1ate1y Not all corrective maintenance is performed 1in
this immediate response mode; but all corrective maintenance
is related to the "system not performing as originally:-
1ntended . ' - '

There are three main causes whlch requ1re sgstems to undergo
corrective maintenance:

W
1. Design errors
2. Logic errors

3. Coding errors

Design errors are generally the .result of . incomplete or

fatilty design. When a user gjves incorrect, incomplete, or
§ unclear descriptions of the sy#®tem being requested, or when

the analyst/designer does not fully understand what the user

is requesting, the resuiting system will often contain design
& errors. ’

Logic errors are the result of ,4nvalid tests and conclusions,
faulty 1logic flow, incorreqllnlmplementatlon of the design
specifications, etc. Logic errors are ,usually attributable
to the designer- or previous maintainer. Often, the logic
error occurs when unique or wunusual combinations of data,
which were not tested during the development or previous
maintenance phases, are encountered.’

4 Coding errors are the result of - either incorrect
implementation of the detailed logic design, or the incorrect
use of the source code. These errors, are caused by the
programmer. . They are wusually errors of negligence or
carelessness and are the most inexcusable, but wusually the
easiest to fix. »

e

3.0 THE SGFTWARE MAINTENANCE PROCESS

The 1ife cycle of computer software covers'its existence from
its cgonception ‘until the time it is no longer available for
use. There are a number of definitions of the software life
cycle which differ primarily in the -categorization of
activities or -phases. One traditional definition iss
-requirements, Q§§.1.£Il, ;mglgmgmmgn L_eﬂmg ‘and gperation
and maintenance. ..

The requirements gbasg encompasSes problem definition ahd

analysis, statement of project objectives, preliminary system*

analysis, functional specification,” and design constraints.

The design phase includes the generation, of software
componént definition, data definition, and interfaces which
are then verified against the requirements. The

implementatioh phase entails program code generation, unit .
tests, and documentation. During the test phase, system

integration of software components -and system acceptance
tests are -performed against the requirements. The‘gggzggigﬁ‘
and maintenance phase covers the use and maintenance of the
system. The beginning of the maintenance phase of the life,
cycle is usually at the de11very and user acceptance of the
sof tware product set. '

Determination of need for change
Submission of change request
Requirements analysis

Approval/rejection of change request
Scheduling of task

Design analysis

Design review

Code changes and debugging

Review of proposed code changes

Testing

Update documentation

Standards audit o
User acceptance " '
Post installation review of changes and
their impact on the system :

15. Completion of task

-—t wd e amd d

he

T SRS

~

The process of implem%nting a change to a production system
is complex ‘and involves -many people in addition to the
maintainer. Table 3 outlines the software-- maintenance
process. This -process begins when the need for a change’
arises and e¢nds after the user has accepted the modified
system and all documentation has been satisfacporily;updatédt
. Although the process is, presented in a linear fashion, there
are a number of steps where iterative loops often occur. The
change request may be returned to the .user for -additional -
clarification; the results of. the design review may
necessitate additional design analysis or even modification .
-of the change request; testing may result in additional..
"design changes or recoding; the standards audit may - require-
changes to the desigh documents, =ode, and/or documentmtion;
and the failure of the users to acuept the system may result
in return to a previous step or the-cancellation of the task.

One way of describing the activities- of séftware maintenance
is to identify them as successive iterations of the first
four phases of the software life cycle, 1i.e. requirements,
.design, implementation, and testing. Software maintenance
involves many of the sa activities associated with software
- develapment with wunique characteristics of its own, some of
which are discussed in the following paragraphs.

Maintenance activities are performed within the context of an

existing framework or system. The maintainer must make.
' - changes within the existing design and code structure
constraints, This is often the most challenging problem for
maintenance personnel. * The older ' the system, the more
challenging and time-consuming ogthé maintenance . effort
becomes. : ' -

. ® . .
A software maintenance effort is typically performed within a
much shorter time frame than a development _effort, A
sof tware development effort may span one, two, or more years
‘while corrective maintenance may be required within hours and
perfective maintenance in cycles of one to six months.

Develogment efforts must create all of the test data .from
scratch. °~ Maintenance efforts typically take advantage of
-existing test data and perform regression tests. - The major
challenge for the maintainer 1is to <create new data to
.adequately test the changes to'the system and thelr 1mp§ct on
the rest of the system.

i

4,0 SOFTWARE MAINTENANCE PROBLEMS

. The responses to the ICST survey "of selected Federal and

, private sector ADP organizations consistently cited a common

‘ set of software maintenance problems. Generally, these

. problems can be categorized as technigal and management.

‘ Most of these problems, however, can be traced to inadequate

management control of the software-maintenance process.- This

section presents an overview of the technical aspects of the

_fmaintenance problems identified in the survey. Management

" control issues are addressed in subsequent sections of this
report. . . " '

¥.1 Software Quality
Modern programming‘pracﬁices, whiél utilAJe' a well-defined,.

well-structured methodology in the design nd "implementation
of a software system, address at least one major software

_ maintenance problem - poor program quality. ‘The importance. -

- of these, methodologies, whether they are.formal or informal
is to give "'structure and discipline to. the process of
developing and maintaining software systems. While this may
alleviate some of the software maintenance problems for

. systems developed using these methodologies, it does not
solve” the problem of existing systems which were designed,
developed, and maintained without utilizing a disciplined
structure. "

A lack of attention to software quality during the design and
development phases generally leads to excessive software
maintenance costs. ‘It should be clearly. understood during
the design and development phases that the maintainability of
the system 1is directly affected by the qualitys of the.
. software. :

4.1,1 Poor software design ‘ .) ‘ ' -

The design specifications of a software system are “vital to
its correct development and imﬁiementatiqnf Poor software
design can be attributed to: .

- a lack of understanding by the designer of what ‘the user .
requested. - -) :
- poor interpretation of. the design specifications by the
developers. :
" = the use of convoluted and complex logic to meet, a
L requirement. R Y
disjointed segments which do not fit together into a
nicely integrated whole. o
- a lack of discipline in 'design which results in
inconsistent logic. =~ ¢ | : -
- large, unmodular systems (or worse yet one large system

- 12 - . »‘21

with no component segments) which are bulky, unwieldy,
and very difficult to understand.

L.1.2 Poorly coded software

A great deal of existing software contains poorly written
, code. As computer programmlng evolved, much of the code
development was performed in an undisciplined, -uanstruct@ted:
"manner. This resulted in a great deal of software which does
not effectively utilize bgs programming language in which it
is coded. Poor programmiwg practices exhibited by this lack
of discipliine include: ' .

~ unmeaningful variable and procedﬁre names

- few or no comments <

- no formatting of the source code

-~ overuse of logical transfers to other parts of the
program :

- use of non-standard language features of the compiler

- very large, poorly structured programs.

The task of. understanding poorly written code becomes even
more arduous for -'the maintainer when the program has been
modified by different individuals and there is.a multiplicity
of programming . styles. Often, such code simply does not do
wnat it was intended to do. Evenh if this code produces’
expected resultsy it is sometimes harder to use than
anticipated; is not suited for the skill level available _to
use 1it; or is slow and unresponsive. Attempting to change
such code without the aid of up-to-date specifications or
other documentation is often a time-consuming effort.

. * 1 2
9.1.3 Software designed for outdated hardware

There are many problems associated with maintaining - software

which was designed to run on previous generation, outdated. '

‘hardware. Oftentimes, the investment in the software is such®
that it cannot be discarded or rewritten and must-be kept
functioning as efficiently as possible. The first difficulty
is in finding maintainers who are ready, able and willing to
maintaih these systems. Few 'good' programmers will be:
willing to work on hardware which is unique and for which the
acquired skills are not .relevant A to ‘other potential work.
The career advancement opportunities from orking on such a
system are minimal to non-existent. Additionally, most
systems of this type are very difficult to maintain. -

22.

/

4.1.4 Lack of common data definiti%ns uf.' (

An application system (whether it is large or. small) should
"have common data definitions (variable:names, .data types,
data structures, etc.) for all segments of the system. These
common definitions entail the establishment of global
variable names which are used _to refer to the same data

- values throughout the system. In addition, the structure of .
any data array or record should be defined and used for all.
programs ipn the system. Problems invariably arise. when two
or more/ programmers‘“1ndepéhdently create data names and
structures which conflict or do not logically-associate with
one another. -« :

4.1.5 More than one programming language used o)

The use of -more than one programming language in an-
application. system (for example, assembly language
subroutines to perform*specific processes in a Cobol program)
is often the cause of many software maintenance problems. If
the maintainer is not proficient in the use of each of\ the
specific 1languages, the quality and consistency of the
maintenance can be affected. Changes to any of the
languages, or corresponding compilers, may also necessitate
changes to the application system.

4.1.6 Increaéing inventory

ﬁapidly changing‘bechnology and its impact on the practices,

procedures, and requirements in many - organizations. has
resulted in a substantial growth 1in the number of new
application systems. In addition, the average 1life

expectancy’of a software system has increased from about
three years, ~a decade ago, .to seven-to-eight years today
[GREE81].) ' ‘ e

4.1.7 Excessive resource requirements

While some types of maintenance (especially enhancements) may
legitimately result in increased resourcé requirements, other
maintenance often results in needless increases. ' This occurs
primarily because of the maintainer's inability to correctly

and quickly determine the optimum solution for the required

. change. The changes are accomplished by making a "patch" to
- the source code (or worse, to the object code) which does not
fit well and is not carefully integrated into the system.
Subsequent maintenance effoFts may ~compound this problem

until the resource Tequirements become excessive..
L
v , »

- 14 - 223-A

4.2 Doggmentation . ' ' , -

One of the major problems in softwaré maintenance can be
summarized in the single hrase - " a failure to
communicate." The maintainer.whareceives the assignment to
perform -maintenance on the systef must fi;st understand what
the program is doing, how it is/doing it, “and why. This job
is greatly simplified if 'the original requester, the
] desigher, the developer, and the previous maintainers have
communicated all the pertinent information about the system. -
This communication should include design specifications, code
comments, programmer notebooks, and other documentation.

- Too often, 'the maintainer receives-little, no, conflicting, °
or incorrect cgmmunicatibn_“from“‘those who have previously
handled the system, There is often -.inadequate documentation;
no detailed record of the original request and subsequent
updates; .no explanation of existing code and changes which
have been made to the code; a weak understanding of new user

requests; “~and no explanation concerning why . seemingly
complex or convoluted 1logic and coding .structures were
b selected over a more simple implementation. v

Thus, the problems of software maintenance begin simply with
a bregkdown in communication between .those involved with
ensuring that the system does what .-it is supposed to do.
This communication is hampered -by - the inability of those
-invplved to speak the same language (jargon), the inability
to"understand the basic requirements (users not understanding
computing; programmers not understanding user requirements), .
and wmost imrortantly the time. frame in which the actions
occur. ’ There may be months or years between the original-
development of a. system and each subsequent maintenance
. activity. When a problem occurs, none of the individuals
~ involved with the original design, implementatibn, and
previous méintenance may be available. The only source of
information available may be the documentatioh and the code.
" Thus, good docupentation is the only means for good.
communication?’ The more - complete, clear, and concise this
communication is, the greater the chance that maintenance can
be penﬁgrmed in a tfﬁely, efficient, and accurate manner.

» . a

‘ \
:
_ U.3 Users i _ .) ..
. Users are often unable to concisely specify what tﬁey want
from . an application system. The initial requirements

definition and design often lack the détailed specificity

~-Which would enable the developer to create a system which
accurately performs all of -the functions the user needs.
-Thus, -anh incomplete system jis placed into production. The
maintainer must enhance the system wusing the initial,
inadequate specifications and the new, sométimes vague,
setimes conflicting, often uncomplete, change requests from
‘the user. -

If a ’. system . 1is well-specified, b well-designed,
well-implemented, and does what the ‘user needs, the user will
often think of things to add. The old adage that '"nothing
succeeds like success" holds true for software development
and maintenance. The more successful a system 'is, the more
additional features the wuser will think of. If the system
works well, the user will be constantly. demanding mdre
features. If it does not work well, there will be a constant
- demand for refiedial action to make it function properly.
ATherefore, it is essential’ that management establish and
enforce controls to ensure that the change requests are Dboth
Justrfled and do not interfere with the malntenance workload.
e
User requests for changes and enhancements whlch .are
excessive, confllctlng, or vague have a major impact on tée
maintenance of an application system. Much of the difficulty
in this area 'stems from the fact that the. user is often
unaware of the impact that one change can have on both the

" system and the maintenahce .workload. The number of user
requests for a specific system is - usually _ directly
proportional to the success of the original system and the
previous maintenance efforts. A careful and thorough

management review . of user change requests is essential for
controlling the level of software maintenance and ensuring
adequate feedback to the user on the cost and consequences of
each request.

‘4.4 Personnel B

A common and widespread complaint by maintenance personnel is
that software. maintenance is considered to '‘be unimportant,
unchallenging, unrewarding, uncreative work which is not -
appreciated . by ‘the user or by the rest of the ADP
organization. Software maintenance requires the efforts of
experienced, well-qualified, . dedicated professionals. It
should not be solely the responsibility of the new or Jjunior
staff. With the development of more multi-purpose, complex
software systems, there is. a greater need for software

. - 16 - 25

1

maintainers who #an readily understand the entire system.
Traditionally, managemént has not rewarded personnel who
performed_ software malntenance as generously as those who
performed software development.. ' It was generally thought
that systems analysts, des1gners and developers were
respons1b1e for the most difficult,, qhallengihg* tasks, and
therefore, ‘must be- mor e capable. : '

While thlssattltude is still. commom “there is an. increasing
awareness by management of - 'the importance of software
maintenance to (the successful, - smooth -operation of . an
organizatioh, Many technical: personnel however still view
software maintenance as an assignment to be avoided at all
costs. There ig too often a general lack of recognition that -
a good maintainer must be & highly- skilled, competent
programmer and analyst concerned both with maklng the actual’
changes -and with assessing. the 1mpact of those changes on the
system and 'its env1ronment

— | L k ‘ . % “ e :‘%P :

H

5.0 1u1 lDFAL MAINTAINER

‘soitwarc maxntenante is the lifeblood of an ADP organization.

v . Persons db\lgned to perform maintenance must effectively. meet -

PR the challengée of maintaining a software system while * keeping
the user satlstled costs down, and the system operatlng
,cttxtlently : : '

The ‘characteristic. qualities: of “this . ideal_” maintainer
Lntlude ' C B
blexxblllty 'F The ablllty ~to adapt ‘dlfferent or -»;

ehanglng”styles-of coding, user requests, and pr10r1t1es

. ‘Self-motivatiorn - the abillty to .1ndependently initiate
and tOmplete \ork after rece1vangtan assignment.

Responsxblllty rellablllty, performance ‘of assigned
tasks in a dependable, t1mely manner S

I

‘treat1v1ty -~ the ab111ty to apply 1nnovatiVe"anddfnoVel
ldeas whlch “esult in practlcal solutlons ' '

f' Disc1p11ne' - the‘ abmllty to . be cons1stent " in ‘thp
B performance of duties and not: prone to trying haphazard
e approaches. - -

- . o ' 2 s - N ? o
Analytiec - the ab111ty to apply well thoUghtout -analysis’
to a problem ' ' :
3 . b whv oy . _,' ,
Thorough - to address even the smallest detall ‘to ensure -
. that all aspects of the problem ‘are understood and nothlng ,
;;lﬁn_ 1s 1eft untested S , e : pee
FxperLence 5” to have. beenf exposed to' a variety of . e
appllcatlons and programmlng env1ronments

v

."The 1deal »malntalner should be ‘a - senlor, experienced
fprofessxonal 'who. can- perform all oﬁ the functlonal activities g

o -vwhlch pLCUF durlng the software life cycle.: Equally

;?f '1mportant from 'a ."maintenance standp01nt - the maintainer

z‘should be extremely knowledgeable about the ex1st1ng _ system
‘.‘before attempting to change 1t.. SR

. AN .
o . . ;
o7 g ,'5? . b

The maintainer must be able to analyze the problem ~and ‘the’: ..
impact on the program, determlne the requ1rements and design .
changes$ necessary for the. solutlon, test the solutlon Juntil
the de31red results are~ obtained, and then™ reiease the.
jrevxsed software to opérationssor the user. The maintalner G
task .:iis Dboth intelkectually and technlcally ‘difficult.
Ma1ntenance is an activity where everything that can gd& wrong
’eventually does. The problems will continue to surface and

S 118 - - S

.enhancements will be requested as long as the system is used.

, It is a function which must be anticipated and planned for.
.It is also a function for which there may be an ; unending
success1on of, emergencies to which staff must bg assigned
from other "more important" work.

The maintainer is also an intermediary between the
-application. ' systems support staff and the ® users.
-Maintenance, unlike development, cannot start with a clean
slate and not be affected by previous decisions and work. It
often takes a great deal of time and patience to analyze both
the’ users needs and the existing system, and then to
carefully and adequately 1mp1ement the ex1st1ng changes.

In the final analysis, the most ‘important function of an

application ".system software support activity 1is software -
maintenance. It is the maintenance, and the response to the

user problems which arise, which are always in the spotlight.

Unfortunately, there is usually far less attention paid to -

maintenance when it is done well and the users are pleased.
Maintenance is an ongoing, almost . always intense, effort
~which should be spotlighted for its. successes, as well as its
failures.

.
K
e

Las , . @ . o .
Ty ' : ey

L . . N mn

6.0 SYSTEM MAINTENANCE' VS SYSTEM REDESIGN

Although maintenance is an ongoing process, there comes a
time when— serious consideration should be given to
redesigning a software system. A major concern of managers
and software engineers is how to determine whether a system
is hopelessly \flawed or whether it can . be successfully
maintained. mittedly, the thought’ of software redesign may

not be ,a fortable one. Nevertheless, the costs and
benefit the continued maintenance of software which have
become drroy-prone, ineffective, and costly must be weighed
against of redesigning the system.

While there are no absolute rules on when to rebuild rather
than “maintain the existing system, some of the factors to
consider in-weighing a decision to redesign or maintain are
discussed in this section. These characteristics are meant
to be general "rules of thumb" which can assist a manager in
understanding the problems in maintaining af existing system
and in deciding whether or not it has outlived its usefulness
to the organization. T

Table ‘4 - Characteristics of Systems Which.
Are Candidates for Redesign

Frequent system failures

Code over seven-to-ten years old

Overly complex program structure and logic
Code written for outdated hardware
Running in emulation ‘mode : : .
Very large modules or unit subroutines
Excessive resource requirements .
Hard-coded parameters which are subject to
change

Difficulty in keeping maintainers
Seriously deficient documentation

Missing or incomplete design specifijcations

e e e e e e @
-

_ a2 \O O~ W) —

- O e

——————-—...—..._—__——_——_—_——_——_——_——_———_—_—_————_——-—__———

When a decision has been reached to redesign or .%o stop
supporting a system, .the decision can be implemerigedisin a
number of ways. Support can-simply be removed and the system
can die thrpugh neglect; the minimum support needed to keep
it functioning may be provided while a new system is buiit;

. or the system may be rejuvenated section by section and given

T ”25;

© Y - 20 -

an extended life. How ‘the redesign is affeptéd depends on
the individual circumstances of the system, its operating
environment, and the needs of the organization it supports.

The potential for redesign as opposed to - continued
maintenance is directly proportional to the number of
characteristics listed in Table 4. The greater the number of
characteristics present, the greater the potential for
redesign. '

' ‘ \ :
6.1 Frequent System Failures o

A system which is in virtually con§tant need -of corrective
maintenance 1is a prime candidate for redesign. As sysfems
age and additional maintenance is performed on them, many
‘become increasing fragile and susceptible to changes. The
older the code, the more likely frequent modifications, new
requir ts, and enhancements will cause the system to break
down. - ' Cy

An analysis of errors should be made to determine whether the
entire 'system 1is responsible for the failures, or if a few
modules -or sections of code are at fault. If the 1latter 1is
found to be the .case, then redesigning those parts of the
“'system-may suffice. ‘

6.2 Code Over Seven Years 0ld .
The estimated life cycle of a major application system is
seven-to-ten years. Software tends to deterioraQe with age
as a result of numerous fixes and patches. If a 'system 1is
more than seven years old, .there is a high probability that
it is outdated and expensive to run. A great deal of the
code ~ in use today falls 1into this category. After
'seven-to-ten years of maintenarnce, many systems have evolved
. to where. additional .. enhancements or fixes are very
time-consuming to make. A substantial portion of this code
is probably neither structured, nor well-written. While this

. code was adequate and correct for the original environment,
¥ changes in technology and applications may have rendered it
inefficient, difficult to revise, and in some cases obsolete.
Howéver, if the system was designed and developed in a
systematic, maintainable manner, and - if maintenance was
carefully performed and documented using established
standards and guidelines, it may be possible to run it
effliciently and effectively for many more ‘years.

J

- 21 -

30

6.3

Overly Complex Program Structure And Logic Flow

"Keep it simple" .should be the golden rule of all programming
standards and guidelines. Too often, programmers engage 1in
efforts to write a section of code in the 1least number o

statements or utilizing the -‘smallest amount of memory,
possible. This approach to coding has resulted in complej
code which is virtually incomprehensible. Poor ©program
structure contributes to complexity. If the system being
maintained contains a great deal of this type of code and the
documentation is also severely deficient, it is a candidate
for redesign.)

Complexity also refers to the 1level of decision making
present in the code. The greater the number of .decision
paths, the more complex the software 1is 1likely to be.
Additionally, the greater the number of linearly independent
control paths in a program, the greater the program
complexity. Programs characterized by some or all of the
following attributes are usually very difficult to maintain

‘and are candidates for redesign:

- excessive use of DO loops

- excessive use of IF statements

- unnecessary GOTO statements

- embedded constants and literals

- unnecessary use of global variables

- self-modifying code '

- multiple entry or exit modules

-~ exgessive interaction between modules

- moflules which perform same or similar functions.

Code Written For Previous Generation Hardware

Féw industries have experienced as rapid a growth as- the

~ computer industry, particularly in the area of hardware. Not

only have there been significant technological advances, but,

‘the cost of hardware has decreased ten-fold during the last

decade. This phenomenon has generated a variety of powerful
hardware systems. Software written for earlier generations
of hardware is often inefficient on newer systems. “ Attempts
to superficially modify the code to take advantage of the
newer hardware is generally ineffective, time-consuming . and
expensive, '

o

ST ,31

6.5 Running In Emulation Mode

One of .the teehniques used to keep a system running on newer
hardware 1is to emulate the original hardware and operating
system. Emulation refers to the capacity of one system to
execute- a 1language written for another machine. In effect,
it extends the architecture (hardware and software) of the
host machine to include the range of the machine being
emulated. This is normally done when resources are not
available to convert a system, or the costs would be
- prohibitive. These systems run a very .fine line between
functional wusefulness ‘and¥ _totagl_ obsoleséénce. One ofg the
major difficulties in maintaining this type of system is
finding maintainers who are familiar with the original
khardware and who are willing to maintain 1it. Since \the
hardware |is -outdated, ' the specific skills developed ~in
maintaining the system have little applicability elsewhere.
Thus, the career development potential of supporting such a
system is not very promising.

6.6 Vefy Large Modules Or Unit Subroutines

"Mega-systems". which were written as one or several very
- large programs or 'sub-programs (thousands or
tens-of-thousands of 1lines of code per program) 03?/ be
extremely difficult to maintain. The size of a moduwle is
usually directly proportional to the 1level of effort
necessary to maintain it. If the 1large modules can be
restructured and divided into smaller, -functionally related
sections, the maintainability of the system will be improved.

R '

6.7 Excessive Resource Requirements

An application system.which requires a great deal of CPU
time, meniory, storage, or othen system resources can place a
very serious burden on all ADP users. These |'resource hog"
systems which prevent other jobs from running, may not only
require the addition of an extra shift, but may degrade the
service to all wusers. Questions which should be answered
when deciding what to do about Fuch a system include: :

\\ - Is it cheaper ‘to add more computer power or to
' " redesign and reimplement the system?

- Will a redesign reduce the resource reduirementé?
If it won't, then there‘is no use in redesigning.

A
-

- 23 -

32 .

6.

8

Hard O#ded Parameters Which Are Subject To Change

Many older systems were designed with the values of
parameters used in performing specific calculations "hard
coded" into the sourée code rather than stored in a table or

~read in frem a data file. When changes in- these values are

necessary, (withholding rates, for example) each program in
the System must be examined, modified and recompiled as

necessary. This is a time-consuming, error prone process

which is costly both in terms of the resources necessary to
make the changes and the delay in getting the changes

.installed.

If possible, the programs should be modified to. handle the
input of parameters in a single module " or to read the

_ parameters from a central table of values. If this can't be

done, serious consideration should be given to redesigning

" the system.

6.9 Difficulty In Keeping @gintainers -

6.10 Seriously Deficient Documentaticn

Programs written in low level ‘languages, particularly
assembler, require an excessive amount of time and effort to
maintain. Generally, such languages are not widely taught or
known. Therefore, it will be increasingly difficult to find
maintainers who already know the language. Even if such
maintainers are found, their experience with low-level
languages is probably dated. '

- [

13

One of the most common software maintenance problems .1is the
lack of adequate documentation. In most organizations, the
documentation ranges from nonexistent to out-of-date. Even
if the documentation is good when delivered, it will often
steadily and rapidly deteriorate as the software is modified.

In some cases, the documentation is up-to-date, but still not
useful. This can result when the documentation 1is produced
by someone who does not understand the software or what is

needed. :

ﬁ%rhaps the worst documentation is that which is

‘well-structured and formatted but which is incorrect or

outdated. If there is no documentation, the maintainer will
be forced to analyze the code in order to try to understand
the system.' If the documentation is physically deteriorated,

‘the maintainer will be- skeptical of it and verify its

accuracy. If +it 1looks good on/f the surface, but is
technically incorrect, the maintainer. may mistakenly believe
it to be correct and-accept - what it contains. This will

¢ / :
- 24 -

f . _ ,.33

\

‘result in serious problems ovef and above/ those which
originally necessitated the initial maintenance.

6.11 Missing Or Incomplete Design Specifications

Knowing "how and why" a sygtem works is essential to good

maintenance, If the reqixirements and design specifications
are missing or incomplete, the task of the maintainer will be
more difficult. It is.very important for the maintainer to

not only understand what a system is doing, but how it 1is
implemented, and why it was designed. Missing or incomplete
desigh specifications often result in end products which do
not perform as intended.- ° The wuser must then request new
changes and enhancements. ' '

N N

T~ 25 -

7.0 CONTROLLING @FTWARE CHANGES

The key to controlling software maintenance is to organize 1t
as a visible, discrete function and, to the extent possible,
plan for it. It is not enough for the software manager to
manage - the budget, people, and schedules. It is equally
important that the software changes be managed and
controlled. T ' J)

Table 5 - Suggested P011c1es for Controlling
Software Changes

—— - - - - - e o . - - - - - . e w]

1. Require formal (written) reduests for all changes.

2."Rev1ew all change requests and limit changes to
those approved.

3. Analyze and evaluate t type and frequency of N
change requests. hﬁ\‘“/ . : N

4, Consider the degree to whlch a change is needed
and its ant%c1pated use.

5. Evaluate changes to. ensure that they are not

"~ incompatible with the original system design and
intent. No change should be implemented without
careful consideration of it ramifications.

, 6.‘Emphas1ze the need to determine whether a proposed
change will enhance or degrade the system.

v

7. Apprdve changes only if the benefits outwelgh the
costs.

8. Schedule all maintenance.
9, Enforce documentation and coding standerds}

10. Require that all changes be 1mp1emented us1ng
: modern, programming practlces.

11. Plan for preventive maintenance.

- 26 - : ' ’ C

7.1 Contfolling Perfective Maintenance

Perfective maintenance comprises an estimated 60% of -the
total maintenance effort., It deals primarily with expanding,
extending, and enhancing a system to give it greater power;

more flexibility, additional. capabilities, or greater
reliability. Requests . for perfective maintenance are
initiated by three different groups: the wuser, upper
management, and the maintenance staff. A

/

The user is almost never completely satisfied with a system.
Either it does -'not perform up to expectations, or, as the
user gains confidence in the system, additional features
become obvious and. the maintenance staff is asked to add
those features.” This is a normal evolution in all software
systems- and_ must be ©planned for when developing budget
requests and resource allocation schedules.

Upper management drives the perfective maintenance process. by
requesting new and enhanced _features which .must be
incorporated into existing application systems, Once again,
this 1is a normal part of the functioning of any organization
‘and must be planned for in the maintenance budget. :

Finally, the maintenance staff drives the perfective,
maintenance process, As a maintainer works with a system,
inefficiencies and potential problems are often found. These
problems, while not requiring immediate attention, are such
that at some point in time they could have a significant
impact on either the functioning of the system or on the
ability to maintain it. Thus, the 1"cleaning up" of code
(often referred to as ‘'preventive maintenance") is an
important perfective 'maintenance process which should be
planned for and included in the resource allocation schedule. ,
The proverbial "stitch in time" of preventive maintenance can-

often prevent minor problems 4n a systems from becoming major

V4 problems at some later date. . This undoubtedly will make
future maintenance easier as a result of the "cleaning up" of
the code. : “

‘The management of perfective maintenance deals primarily with
maintaining an orderly process’ in which’ all requests are
formédlly submitted, reviewed, assigned a priority, and

— scheduled. This does not mean that unnecessary delays should
be built into the process, or that in small organizations
these steps are not consolidated. - Rather, it defines a
philosophical approach which can help the maintenance manager
bring order to the maintenance environment.

There should be a- centralized approval point for . all
maintenance projects. . This may be the maintenance project
manager or, for larger systems or organizations, a review

’

- 27 T o 36

board. Changes should not just happen to a system. When the
need for a change or enhancement arises, a formal written
request should be submitted. -~ Each request should be
evaluated on the basis of resource requirements, time to
complete the work, impact on the existing system and other
maintenance efforts, and justification of need. The
centralized approval process will enable one person or group
of persons to have knowledge of all the requested and actual
work being' performed on the system. If this is not done,
there is the likelihood that two or more independent changes
to the system will be in conflict with one another and as a
result, the system will not function properly. Additionally,
different users will often request the same enhancements to a
system but will have "small differences in the ,details. By
coordinating these requests, details can be combined and the
total amount of resources required can be reduced. : -

If the system requires maintenance as a result of changes 1in
policy or procedures in the~%ﬁganization, an evaluation of
" the cost and effects of the chanhges should be .prepared for
upper .management, Ideally, this should be prepared prior to
the decision to institute the changes, but even if it is-not,
management and the users must be aware of the costs. Users
often request enhancements to a system because it "would Dbe
nice to have" or another system has a similar feature. . These
requested enhancements should be evaluated and the estimated
costs reported to the user. Regardless of whether or not the
users are responsible for funding the work, it is important.
to keep them aware of the actual costs of their requests.’
Doing so will help to minimize the amount of . unneeded ..or .
marginally needed enhancements which must be installed on the
system. 'In addition, this type of ifiterchange with the user
will help the maintenance. manager in evaluating and assigning
priorities to the work requests. N .

In many organizations there is a significant backlog of
maintenance work ‘requests. ‘Usérs neéd to understand the’
level of effort required to meet -their requests and ' the:
relative priority of the work in relationship to dther user
requests. This can only be accomplished by involving all
parties in the discussions and keeping everyone informed of
the schedules and actual progress.: ‘)

7.2 Controlling Adaptive Maintenance
Adaptive maintenance comprises approximately 20% of the
maintenance Dburden. - It consists of any effort required to
keep a system functioning as -a result of changes in the
environment in which -it must operdte, and is, to a great
degree, beyond the .control of the software maintenance
manager. Changes to the operating system, system utilities,

Q | ' _-28-

terminal devices, and the rules, laws, and regulations which
the software must incorporate, are the primary causes of
adaptive maintenance. The maintenance efforts required are

| usually non-productive in terms of improving the application -

system. 7 :
There is little that the software maintainer can do to
control changes to rules and legislation. These changes, to
the extent possible, should ' be anticipated and ‘the code
structured in a manner which facilitates making the needed
changes. This type of adaptive maintenance usually must be
performed whernever it is required. Management should always
be given feedback regarding the impact that changes 1in
policies and regulations have on the maintenance of a system,
especially the cost.' This feedback will imprbve the future
decision making process and may reduce the level of adaptive
maintenance. - , - - -

In many 6rganizations, the application Support organization
functions. independently - of . the computer - facility
organization. As a result, there is inadequate‘communication

~and understanding by each . group regarding the impact of -

decisions and work on the other function. Thus, changes may’
‘be made to the environment and announcéd to. the user
community without giving the application support fgncg;on an
opportunity to analyze the impact of the Chaﬁk%s and the
effect on the -application system. Similarly, changes or

additions to. an application system which increase"the'

computgr-resourc¢=nequifements may cause serious problems
. With the functioning of all applications using. the computer.

Therefore,” it' is: very important that V'thé{y fagildtiéél

organization and the applications support organization work

closely to minimize the impact of one organization's work on-.
the other organization. There .are times when a choice simply '

~ does not exist, but usually, through ~adequate -planning and
. evalydtion, both organizations can -accomplish their
- objéctives with a resulting net improvement for each.

Thé-apﬁlicatioh”suppbrt manager ' has the responsibiljty 'tbf
know what changes to the environment are being planned afid
considered, and. to keep. "management. -informed of their

potentialg'impaciff(both*”negativeq;andﬁqpositive).'?In doing
this, the total costs and the-implications of the changes can
be ,reviewed by 'management’ Decisions can then . be made
~regarding.which'. organization should bear the costs’ of . the
resulting required adaptive maintenance of the application
- systems.- ' N . o "gﬁﬁﬂ

o : .
. S 3 ‘

< . st * e
. PE : . i

7.3 CbntroilingiCorrective Maintenance

Corrective mBintenance is primarily the identification and
" removal of errors, bugs, and other code defects that either '
reduce the. effectiveness of the software or .-render the
product useless. This c®tegory of maintenancé 'is concerned
with returning the code to an operational state. Controls
are needed to ensure that the occurrence of errors or bugs
are the exception rather than the rute, :
Most -of -the cost of software maintenance is 6ften assumed to
be the result . -of poor workmanship durihg development and
priov maintenance phases of the system. While this 1is a
contributing cause, it 1s very rare for even a Yperfect”
system to not require significant _maintenance during - its .
lifetime. While software does not "break" in the sense.thaf.
a piece of hardware can fail, it can Dbecome non—fgpctioﬁﬁ&###
. or faulty due to changes in the environment in whigch. it must’ -
. operate, the size or sophistication of the user Ycommunity,
the * amount of data it must process, or damage to codé which
“is.the ‘result of other maintenance:’efforts on other parts of
the. .system. Corrective maintenance is necessitated by
discovery of a flaw which has alwayS'exgﬁtédﬁin the system or
was introduced during prior maintenance.: ¢ .

3

Difficulties encountered during correctivé -maintenance can be -
reduced significantly by the adoption and enforcement of
appropriate; standards and procedures during the development
and maintenance of the software. While it is probably not
possible to:eliminatei corrective maintenance, the consistent
and dis¢iplined adhgerence to effective ‘design and programming

i 1, significantlyiféQpce the corrective

standards:.can, rand Wil
maintenance burden. ' v
Sl e . v . SRR

R S . . v

S e
‘-.'_“: .o - :

A

v

il

ta

[) : s el s ™~ ¥
8.0 IMPROVING SOFTWARE MAINTENANCE '.

‘Ma1nta1nab111ty is the ease: w1th whlch software can be
changed to satisfy user requirements or . éan’ be corrected when
deficiencies are detected. " The malntalnabllity of a . system
must be taken into cons1deratlon throughout the life cycle of:
that system. Many 'techniqués and aids ‘exist/-.to assist the .
system .developer, but there: has: been little\emphasis on aids
for the maintainer. . However, since the processes which -occur

in the maintenance. phasé are .simifar - those 'of the
. development phase, there: 1is’ cons1derable OVerlap. ‘in the
o appllcablllty of__the- deyelopment- ?{¢5- in. the maintenance

environment, LA .;'-" g: IR TN ﬁ.‘UA_
<= The philosopMftes, procedures,_ ‘and techniques discussed in
< this section should be utilized throughout the. life ‘tycle of
a system in order to provide maintainable software.” Software
systems which were not developed using these techhlques can '
also benefit from thejr application during major .maintenance
activities. In other words, if a system must be maintained,
+ the maintainability of the system can be 1mproved by applylng
the ideas* discussed in th1s _sectlon to the parts of the
system MhiCh are modified u}ing the maintenance process.
While ﬁhe effect will not ‘be as profidounced as when programs
”are "developed with maintenance in mind"™; future - maintenance
~efforts can be made easier! by utllizing the techniques
described in this section t7 "malntain systems with future

R 2

ma1ntenance in. mind" !

‘\A‘.,‘-'

Table 6 -»Factors Which mffect Sphrge
‘;gﬁ\}" Code Maintalnabllity

¢

bnvent16ns for variable names,
'“d'es «format grouping, etc. '

.

.2 Eﬁgndard data- definitlons v ERCEIIN
"n,j . s N
B otag 35 %»Meaningful comments 4n the code.

E 6. Avoida@ge of compiler extensions

A

-ouroe code gu;dellnes and standards a1d..maintainaoillty by

'prov1d1ng a structure and framework w1th1n uh}ch systems can,

g.1

be developed and maintained in a ‘common, - more - easlly
understood manner o I

.1 Use a s1ngre h1gh order language

The use of more than one programming language or the use: ofu

machine, assembler or outdated languagps, when it is not

. absolutely necessary to do so, can 6enlously 1mpact the

of w
- (HOLY)

#

maintainability of a system. When more thanore 1anguage is-

‘employed, the potent1al for gommunication problems petween

modules is increased. Systems written in Tow- order or
outdateqd, languages are difficult to maintain because they
genergl require more source code to perform the same amount
d‘! ’Wherever possible, a single high order -language
Hvuld be used. Advantages of us1ng a HOL 1nclude
- HOLs resemble English and aro easy to learn, read
and understand : :

- There are standards for the commonly used HOLs

R (COBOL and FORTRAN). .

There are a substantlal number of programmers who
.;_understand and can usi HOLs effectgvely

* -, . ’ r'.
-fMany of the older mach1ne languages are noéw longer .
"supported by~the manufacturer

‘
e

‘,,p-Fewer programmens understand machine languages, and
: ~fewer st111 ‘cam use them effectively., “ .
‘ I '.,\ N S citp
. -;HOLs are. oElf documentlng to aglarge deg:ee.
- lt 1s easier to’ move from one - env1ronment to another
WLth an HOL

- -

he 'Y
LR v

.?'Codfngfeonventions
The tlrJt ‘obstacle a maintainer must conquer is the code

itoell; Unfortunately, a great deal of -the source code
wrltten by developers and maintainers is not written with the

futurte ~maintainer. in mind. Thus, the readability of source ;

(odv' & otten very poor) o A oo

&vurcs &gde should be sglfldggumsnting and be written
Ln N dtryslursd £Qcmab

N

R AN

X

Regardless of the programming language(s) USed simple’ rules

regarding the wuse .-of the language(s) and the physical
formatting of the source code should - be established. Code
standards do not’ have-to be lengthy or complex in order to be
effective. In faot, llke ‘the code itself, the best standards
are simple and short The following" techniques can improve

program readability and should be used as ~the basis for a

code standard.

- Keep it simple. Complicated, fancy, exotic, tricky,
confusing, or "cute" constructions should be avoided
whenever a simpler method is available, Use common
sense -and write ‘'code -as if you had to pick it up and

///malntaln it w1thout ever having seen it before. '

- lgdgntatigg, when properly utlllzed between sections of
code, serves to block the listing into segments. Inden-
tation and spacing are both ways to show subordination.

~

It is*very difficult to follow code which continues line .

afterlbine without a break or change in form.

'v - , , Lo "ﬂ N - . : "
.Extensively comment the code with meaningful comments,- .

Do apt comment :for comment's sake, Rather, comment in

° order to communicateé to subsequent maintainers not only

- - what was done and how it was done, but why it was done
,, @n this manner. L §

S w t

important coding principles bp fbllow when developing
and maintaining programs. The name of a variablie should
convey both what it is and why it is used. s

- Similar variable names should be av01ded. Each variable
name should be unique-in order to prevent confusion., -

- When numerics are used, they should be placed at the end
of the wvariable. Some of the more common errors are
caused by mistaking variable names which begin with the
numerics 0,%+2,5 for 0,I,Z,S, respectively. Numbers
used shprogram tags or labels shOuld be sequential.

- Logically related functi®ons shgyl_dbg grouped .together

»

B

-‘Use of mggg;ngﬁ_l gg;ablg ngm§§ 1s /Ene of. the most-

in the same modul€ or set of modules. It is extremely.

e + difficult to analyze the program flow when enecutlon

¢ extent possible,” the 1logic flow should be from top to
bottom of the program. ')

jumps in and out of different portions of code. To the*

BE S Avoid non- standard ﬁggtgzg§_e the . .versio™ of the-

language - being. used unless absolutely necessary. Fail-
ure to do so will exaceérbate problems of conversion or
. movement "of the prograp'to another machine or system.

Q : . LR .

EBiq‘ L Lo =330 T 45 v .

.3 Structured, modular software

While there has been cons1derable debate regardlng struetured
programming, - the . consensus 1is that generally, “such code 1is
easier to read. A structured program is constructed with a

?Hlbas1c -set, of control structures which each have one exit and .
onews 'entry p01nt Structured programming technlques -are¥-_

’hell defined methods ~which incorporate top-down design ‘and
1mp1ementat10n and strict use of structured programming
constructs. Whether the strict def1n1t10n, or a more general
approach (which is intended to organize the code and reduce -
its complexity) is used, sttructured- programmlng has proven to
be useful 1n improving the maintainability of a system.

Modularity refers ‘to the structure of a program. A program
comprised of small, hierarchical units or sets of routines,
where each performs a part1cu1ar, unique function, is said to
be’ modular,,“IIt is not, as is often thought, mere program
segmentation. ..

S module is said - to have two basic
determinants: cohes1veness ‘and coupllng

Cohesion refers to the degree- to whuch the functions or
processing elements within a module- are related or bound
together. It is the intra-module relativeness. The greater
the cohesion, the less impact <changes will have on the
‘software ‘

Coupling refers to the degree that modules are dependent upon

each _other. The 1less dependency or interaction there is
" between modules, the better, from both a functional and a
maintenance sﬁandpoint. A high degree of cohesion almost
always assures:©'a lower degree of coupling. Controlling .-

.cohesion and.’” coupllng ‘are very effective techniques in the
" design and ma1ntenance of structured' modular software,

_One of the most obvious advantages of designing and coding

structured modules is ' that if it 1is determined that a

h.function is no longer needed, only that module 1is affected.
The size of a mpdule is dependent upon its function. I
should, however, be- kept as small “as possible. Module
should be constructed using the following basic design
principles: °*

- Modules should perform only one principal funbtion..
- Interaction between modules should be minimal. N

- Modules should have only one entry and one exit point.«)
L .)

43

’_3“"

8.1.4 Standard data definitions

N

It is-very important that individual modules of a system not
only’ "be able to communicate with one another but that the
maintainer understand what is being communlcateé typical
problem in a large multi-module system is that one person
will use a set of names for data items which do not match the
names -used by another person on the team. Even more serious
is" the . use of the same names to represent two different data
items. Thus, it is imperative that a standard set of data
definitions be developed for a system. These data
definitions will define the name, physical attributesf
purpose, and content of each data element wutilized in the
system. These names should be as descriptive and meaningful
as possible. If this is consistently and correctly done, the
task. of reading and understanding each module and ensuring
correct communication between each module is greatly
simplified. . : '

14

8.1,5 Well-commented code ,

' * .
Good commentary increases the intelligibility of source code.
In addition to making programs more readable, comments serve
two other vital purposes. They provide . information on_, the
purpose and history of the program, its origin (the aufhor,
creation and change dates), the name and number of
subroutines, and input/output requ1rements and formats. They
also provide operation control -information, instructions, and

.recommendations to help the maintainer understand aspects of

the code that are not clear.

Maintainers (and managers) often mistakenly confuse quantity’
for quality when writing comments. The purpose of comments
is to convey.information needed to understand the process and
the reasons for implementing it in that specific manner, not

- how .it is being done. Comments should be thought of as the

primary form of documentation. They should include the
f‘ollow&i‘ng: ' -

- what the code is doing, '/

- why a process is being performed,

- why it is implemented in the specific manner,

- how this section of code affects and interacts
with other sections of code, :

- any known or potential problems,

- ‘'when the changes weré made,

- who made the changes,

- what specific code was.modified,

- any other information whlch mlght help a future
maintainer in understanding and modifying the code.

- 35 - {14).

\

/7

8.1.6 Avoid compiler extensions

The use of no¥-standard .features of a compller can have
¢ serious -effects on the, maintainability of a system. 'If a
compiler is changed, or the application system must be
transported to a-new machine, there is a very great risk that
the extensions of the previous compiler will not be
compatible with the, new compiler. Thus, it 1is best to
refrain from languagé&extensions and to stay in conformance
with "the basic features of the language. If it is necessary
to use a compiler extension, its use should be
- well-documented.

_8.2 Documentation Guidelines
The documentation of a sysﬁem should start with the original
requirements and design specifications and continue

throughout the life .cycle of the systemn. Good software
documentation is essential to good maintenance.

1. Keep it simple and concise.

2. The maintainer's first source of documentation 1is
the source code,

3. The manager's first source of documentation is the
design specifications and implementation reports.

4, 'The user's first source of documentation is the
Users Guide and the maintainer. ’

s 5. Do not under document. Do not over document.

6. Documentation cannot be "almost correct". Either
it is up-to-date, or it is useless.

7. Documentation maintenance is a vital part of
o system maintenance.

=%

8. Dxcumentatlon should be available to the
intainer at all times. .

- 36 -

45

R

The documentation must be planned so a maintainer can quickly
find the needed information. A number of methodologies and
guidelines exist which stress differing formats and styles. .
While preference may differ on which methodology to use, the
important element is to adopt a documentation standard and to
then consistently enforce adherence to it for all software
projects., c '

The success of a software maintenance effort is dependent on
how well information about the system is communicated to the
maintainer, Documentation should support the = useable
transfer of pertinent information. Documentation guidelites
should includ€ instructions on what . information must be
provided, how it should be structured,- and where the
information should be kept. In establishing these guidelines
. and standards, keep in mind ‘that the purpose is to
communicate necessary, ° ¢ritical - information, not to
communicate all information.

&
Basically, the documentation standards should require the
inclusion of all pertinent material in a documentation folder

or notebook. This material should cover all phases of the‘f”
software life cycle and must be kept fullg ﬁpdatedh;f

Management must enforce documentation standards® and . NQT- :

and/or update documentatlon before ne ork ,a551gﬁments age

permit short cuts. There should be _a 5equ1rement toqcomplete:ibafﬁ

begun.w;f g; " l:_(b ST .,L‘A%

The key to successful documentatlon is that not only%must the57-5“

necessary information be . recorded it must be easily and
quickly retrievable by the malntalner. On-line documentation
~which has controlled access and update capabilities is the
best form of documentation for the maintaiher. If the
documentation cannot be kept on-line, a mechanism must exist
‘to permit ‘access to the hard-copy. documentation by the
maintainer at any time. ' ' .

If documentation guidelines, or any other software guidelines
or standards, are .to be effective, they must be supported by
a level of management high enough within the organization to
ensure enforcement by all who use the software or are
involved with software maintenance. Such guidelines, when
supported by management will help direct attention toward
the need for greater discipline in the software maintenance
process. :

For further information on documentation guidelines and
standards, see [FIPS38], [FIPS64], and [NBS87].

hd

- 37 - 46

8.3 Coding And Review Techniques

The techniques listed in this section have been found to. be

very effective in the generation of maintainable systems.

_ Not: ,all techniques are generally . applicable to all

‘ organizations, but it is.recommended that they be considered.

1. Top down / Bot tom up design and implementation
2. Péer reviews h |

3. Walkthroughs | N

4, Chief prograhmér team

8.3.1 Top down/bottom up approach

‘A top-down design approach (development or enhancements)
involves starting at the .-macro or overview level and
successfully breaking each program component or large,
complex problem into smaller 1less complicated segments.
These segments are‘'then decomposed into even smaller segments
until the 1lowest leve module of the original problem is
defined for each branch in the logic flow tree.

In general, toS:aown implies that major functions are
considered first. Once it is clear how they fit together,
the next, lower level functions are designed. During the
first phase, the lower level functions are often created as
empty black boxes or modules that simply return control to
the major level or calling functions. :

The bottom-up design approach begins with the lowest level of
elements. These are combined into larger components which
are then combined into divisions, and finally, the divisions
are combined into a program. A bottom-up approach emphasizes
designing the fundamental or "atomic" level modules first and
then using these modules as building blocks for the entire
system.

Both of these approaches are valid and superior to a random

"seat-of-the-pants"” approach. In most situations, a
combination of top-down and bottom-up can be utilized to

- 38 - 47

v s :
deVelop a clear, concise, maintainable system« The adoption
and adherence to either approach provides a .structure or
. methodology which enables -persons working on a system to
communicate with one another in a manner which is consistent
- and understandable. :

8.3.2 Peer reviews

Peer review is a quality assurance method ,in which ¢two or
more programmers review and critique each other's work for
accuracy and consistency with other parts of the system.
\ This type of review is normally done by giving a section of .
code developed by one programmer to one or more other peer
. programmers who are charged with identifying what they
consider to ‘be. errors and potential problems. It is
important . to ; establlsh - .and to keep clearly in the
partlclpants' ‘minds that the ‘process is 'not an evaluation of
a programmers .capab111t1es or performance.,- Rather it is an
. analy51s and evaluatlon of! the code. As stated in the name,
-such - reviews. '‘are performed »on a peer basis- (programmer to
Fprogrammer) -and should nevgrrbe used as a basis for employee
evaluation. Indeed, prbgect . managers should not, :if
possible, be involved in the peer reviews,. e

8.3.3 Walkthroughs ;{*?}
Walkthroughs of a prpposed solutlon or implementation 'of a
maintenance task §*can range from informal to formal,
unstructured to structured and simple to full-scale. The

principle involVedg n walkthroughs is,simply that "two heads

are better’ than one, Inolts simplest form, a walkthrough can f;
be two makﬂte;ners slttlng down and discussing a task which: Jﬁw”

one of ther’ 1s‘work1n
may be ‘l ‘structu
secreta& qua
walkthrq N
manager to
the team.ﬁ

‘on. In its more complex forms, therem
;agenda, report forms, and a recording
{;may or may ' not participate in
'F, .. this is an excellent way for a
about the work being performed by .

The ba51c‘format.of a\walkthrough is for the' person whose -
work 1is 1be"ng revnewed “to describe-in detail the proposed:

~solution orit eid?aft of;‘thé code. The reviewer(s) ask(s)
questions ' i ‘_Iarnﬂy* areas where questions arise and point
out any errq s‘oﬁ potent;al problems which are spotted. The
goal, as o rev1ews ~is to minimize the number of
design, logic¢ ”'ﬁhd%ori codlng flaws which remain in the
system. Walkﬁhroughs qne simllar to peer reviews, but differ
in that the mahager may be present the reviewers meet as a
group ‘to dlscuss thexwork ‘under’ consideration; and there are
often formal record;ng amdxreportlng mechanisms.

‘Two important points should be stressed regarding the
manager's role in a walkthrough: :

1. Walkthroughs should never be used as part of an employee
evaluation. The goal 1is an open, frank dialogue which
results in the refinement of good ideas and the changing
or elimination of bad ones.

2. The manager's role should only be as active as his or
her technical expertise regarding the subJect matter
permits. The manager must recognize that the other
members of the walkthrough team probabiy have greater

N technical knowledge about the specific subject being

: discussed. Participating in a passive manner can be an

excellent means to attain an understanding of the main-

tenance effort and to improve the manager! s/ technical
understanding of the system.

8.3.4 Chief programmer team . - |

The chief programmer team is based on the premise that’' an
experienced programmer, supported by.a team of programmers,
can produce computer programs with- greater speed and
efficiency than a group of programmers working under the

. traditional line 'and staff organization. ‘The size K of the
team can range from 3- 10, with the chief programmer being -
responsible for overall 'de51gn, development, review, and

- evaluation of the work performed by the members of the team.
This can include the establishment and enforcement of rules
regarding programming style, control, and the integrity of
the programs. * .

The chief programmer functions as the éeCal‘ point of the
maintenance team and is required to be aware and familiar
" with all work performed by the team. There is an enormoqs
. amount of administrative and technical responsibility placed
on the chief programmer. This person must have impeccable
leadership abilities, a strong technical capability, and” the
~ability and willingness to delegate work and responsibility. -

- 40 - | 49

8.4 Change Control

-

Change control is necessary .to ensure that all maintenance -°
requests are handled accurately, completely, and in a timely
manner. It helps assure adherence to the established
standards and performance criteria for the system and

- facilitates communication' between the maintenhance team’
.members and the maintenance manager.

1. Change request.
2. Code audit

3. Review and Approval

- e R R R R R e e SR G SR SRl W R SR SR e e

8.4.1 Change request

RFR
;

All changes considered for a system should be formally

- requested in writing. These requests may be initiated by the

user or maintainer in response to discovered errors, new
requirements, - or changing needs.,r Procedures may vary
regarding the format of a change request, but it is
imperative that each request be fully documented in writing
so that it can be formally reviewed. The review may be
performed by .the project manager or a change review board.
The key, however, 1is that there must be a formal,
well-defined mechanism for initiating a request for changes
or enhancements to a system.. ' Change requests .should be
carefully. evaluated and decisions to proceed should be based
on all the pertinent ardeas of consideration (probable effects

-on the system, actual need, resource requirements vs resource

availability, budgetary considerations, priority, etc.). The
decision and reasons for the decision should be recorded and
included in the permanent documentation of the system,

The change request should be submitted on forms which contain
the following information: ' :

*)

-4 - 590 .

. = name of requester . ,
- date of request : o - :
- purpose for request (error reported - enhancement, . etc)
- name of program(s) affected
- section of code/line numbers affected
- name of document(s) affected
- name of data file(s) affected
- date request satisfactorily completed
. - date new verglon operatlonal
- name of main¥ainer
- date of review
~ name of reviewer
- review decision

.2 Code audit

Y

' The code review or audit is a procedure used to determine how.

8}4,3 Review and approval

well the code adheres to the coding standards and practices
and to the design specifications. The primary objective of
code audits is to guarantee a " high degree of uniformity
across the software. This becomes a criticak factor when
someone other than the original developer must understand and
maintain the software. ‘Audits are also concerned. with such
program elements as_ commentary, labeling, paragraphing,
initialization of common areas, and naming conventions. The
audit should be performed by someone other than the original
author. Questions addressed during an audit should include:

- Are comments well constructed? .

- Do the comments provide meaningful 1nformat10n°

- Are the comments consistent throughout the code?

- Are the constants centrally defined and locally
initialized?

- Are the statement labels descrlptlve and sequential?

- Is the code formatted in a readable manner?

- Is indentation and paging used to make the code
éasier to read and understand?

&

Review and approval is the final phase of the software change
control process. ‘Prior -to installation, each . change
(correction, update, or enhancement) to a system should. °be
formal¥y reviewed. In practice, this process ranges from the
review and sign-off by the project manager or user, to the
convening of a change review board to formally approve or
reject the changes. The purpose of this process is to ensure

that - all of the requirements of the change request have been '

met; that the system performs according to specifications;
that the changes will.- not adversely impact the rest of the

.- 42 -

o 51

system ‘or Hother users; .that al]l . procedures have been
followed, .and Jrules and guidelines adhered to; and that the

) change 1s 1ndeed ready for installation “in the production
system. All review actions and findings should be added to -
the system documentatlon folder. - '

=

“8.5'Testing!$teﬁoerds And. Proéeouqes

Testing, 1like documentatlon,. is an” area of software
maintenance which is often not done well. Whenever possible,
) the test procedures and test data-.should be developed by
someone other than the person;., ‘who performed the actual G
' maintenance .on the system. The * testing: standards = and., ..
procedures should define the degree -and depth'of testing to -’
'be performed and the disp031t10n of test“ materlals upon :
successful completlom af - the testlng. '

'Testlng is a crltlcal component of software malntenance.“ As
such the test procedures must be con51stent and- based .on
sound principles. Whether the testing is performed’ &n the
entire system or on a single module within the system, the
same principles are required. They include the following:

- The test plan should.defihe the'expected output

- Whenever possible, the test data should be prepared by
somedhe other thHan the tester. -

- Both the valld,‘lnvalld, expected, and unexpeoted oasest
should be tested, . : :

- The test should examine whether o? not the program is
doing what it is supposed to. ; {

- Testing is done to find errors, not to prove, that errors
do not ex1st.

For further information on testing, see‘[FIPS101], [NBST5],
[NBS93], [NBS98]. : -

(¥} 4
ho,
4

L= 43 -

9.0 SOFTWARE 'MAINTENANCE TOOLS

Software tools are computer programs which can_be used 1n i*ef:.
development analysis, testing, marntenance, and management

. of other computer programs. and their documentatlon. -This -~
- . section. discusses some tools whlch ‘can be useful “in-

divided into two categories: technical,K and management. ‘The -

“maintaining a software system, Generally,,these tools can be}: '

"technical tools can be further subd1v1ded into those. wh1ch'”-
process, ' analyze, and test the system, ‘and those, which’ -help =,
the maintainer manipulate and change the source code and ‘the:

documentation, The management tools ass1st the maintenance.

manager: in controlllng and tracklng all - the maintenance .

R tasks. ~Table 10, lists some of the" tools available to the
R ma1nta1ner and - thes maintenance. manager. A glossary of
ol g,bsoftware toOls and technlques can be found: 1n [REIF77]

Sy

Technical Tools .
Proocessing Tools ' T o ‘
Compllers '
Cross referencer

Comparator '
~ Traces/Dumps e
Test data generator _W"J”x

Test coverage analyzer

yerlflcatlon/Valldatlon F

Clerlcal Tools
On-line Editor
Documentation Library .
‘Archival ‘Capabilities
Reformatter
Data Dictionary

sy Management Tools

Problem Reporting

Status Reporting

Scheduling :
. Conflguratlon Management

W

'm"Preprocessor ‘ - o me

9.1 Cross Referencer "gﬁn;g",_ - B o
One of the 51ng1e most useful aids to the maintainer 1is -the
cross reference list ~which aécompanies the compiler source
listing. It usually prOV1des a.concise, ordered analysis of
the data var1ab1es,' 1nc1ud1ng the locatlon and number of
times the variableés-are used, as well “as other . pertinent
information about. the program g I

In large-systems, it 1s often difficult t&' etermine ~which
modules ‘are called: used by ‘other pro rams, and where RN
w1th1n the system a spe01flc module . or: parameter: is used. o
What ‘is ‘often’ needed ‘to, 'is the capacity to produce and .
develop a’cross reference listing’on an ‘interprogram. rather:

-than on’.an 1ntraprogram basis, This information can be
obtained :from some of the . -availéable cross reference
-generators, To ,the maintainer, suchVinﬂ‘imatlon is useful
..~ when attempt1ng to backtrack to determineWihere | ap’ .errer ..

'"}occurred e L .3vf S

~ Comparators are software: tools yhlch accept two (or morekEm
. sets . of .input. and . generate report which lists thejj"
.,lescrepanc1es between: ‘the input data Sets. .This tool can 'be 4
fﬁfused for - finding changes in the source code, input.data, . . .-
. program output, ete. It 1is extremely -useful to: the .
‘maintainer who must ascertain if:a change made to the system’
*caused it to fail or: ‘work: dlfferently, It can also .be wused:
jto ensure that ©one set of test" results is identical to'a ’
prev1ous set, or 1dent1fy ‘where the results have changed. . .
Most . comparators are developed for a "specifie:s system = They, . .,
‘may be general .in nature or work on- specific’ parts » of the -’
system and perform specific functions« They are: relatiVely
simple to build and are very valuable tools “in . the
maintainer's tool box. ‘ .

’v9;3‘DiagnosticvRoutines .

Diagn0stic routineseassist the. maintainer by reducing the

>~amount of time and effort required:for problém- resolutlon.
-Some of the more commonl* used rout1nes 1nclude.v“' :

- tragg whloh generates an audlt tra11 of actual G o

Lot operatlons durlng executlon _ L YQ"*"B.de*«

S breakpoint whlch 1nterrupts program eXecutlon to T T

1n1t1ate debug act1v1t1es-_r',, SRS) .

S T , ‘ : ?
_ o e . ¥
i . - N . ° : . . T b w !
. P T 1 S | Yy : N
. a . . - ~ ot
. RN _ - 45 - 5 : R _ :
o CL
, : TR S
3 ’ : ! H . : .

i Lt

.. 1 v
- S g

Lt gave/reglart which sallvages program execution status
By at oany Hoint to permit cvaluatlon ahdfre-initfation v

¢ - Jumpy which pive lis tlngu (usually unformatted or
partially tormatted) of "all or 'selected portlons of
the program mgmury at a specific point in t1me.;
. . ™ $a)
< Compilers often p}ovide diagnostic capab111t1es that ‘can be
R “Plundlly selectéd-to assist the- programmer~fn analyzing the'
LFexvoutign flow, and apture a myriad of: data at predetermined_
0T apolbts o 1n the processt” In the hands of-a’ sklrﬁed maintainer,
“these digpnostics can help identify <the sectlohs, of code
.which cause the error, as well as what is talzing place there.
. While these aids arey egtremely useful, theftvare ,usually
c'arter the tact" tools used to help determine what has gone
wiong with an operational. system. Far more usefulv,are
diagnostic capabilities which are: designed and- 1mp1emented.
wilhin the source code as it is developed “This latter (type
¢t diagnostic 1s normally disabled, 'ubut can be turned on
throtgyh the use _of one or more control parameters

P+ Lo
v'-

S Application t;llty lerarles

Mest operating systems prov1de support and .utility 1libraries
khth contain standar functional routines (square roots,
e, Slhe, cousine, dboOlUtO values, etc.). In addition, HOL
Hsnwyml(r» have many built-in functlons which can be utilized
e ‘ihe programmer to .perform 'standard fUthlOﬂ&w‘ -Just . as
v}tcuo libraries provide sYandardized routines to perform
s Srccesses which are, common to many., applications systems,
Lilarpe application system should ®ave a procedure library
" whitch kuhtdlhu routlnes which are common to various segments
ot “the df“;l&dtlon systeme ~ These functions and ut111ty
routlnes thould(be availabie to all persons working on thg \
yotem trom fhe developer to the maintainer. Appllcatlonw
;{?t utxlity 11b raries aSSlSt by(' , _vv
o osaving time” (thé programmer does n%t have to reinvent

v the wheel). ' Y

’ L , 2 :)

{.slnplgfyiht the hanngg of tommon': code (changes all
: Programs W which utilizeya module).: tThis usually requires
relinking or recompllirng each Affected program, but
it ellminates the need to change lines of.code in each
¢ the programs. £

(S .
._,v;

- enabling wider use of utility procedures, develtped by
Che gerson or group, " by all persons worklng on the
svstem, o :

- tuvcilitating maintenance of the system by keeplng tﬁe‘
soge in a central library or set of libraries?.
- 46 - S5
O " . |

s &

~

; ®

In addition to the stored l1brary routines, all the source
code for the applications system should be stored in a
centralized, on-line library.' Access to this library should ¢
_be controlled by a librarian who has the duty of maintaining
the 1ntegr1ty of the library and the code

- 3 L]
14 . .

9. 5 On- l1ne Documentat1on L1brar1es .,
" . o

System documentatlon ormally consists of ‘one or more fo}ders *
or files in* hardcopy .form which are .stored at a central
location. The need for the maintaingrs to have access to,the
information 1in . gthese .documentation folder’ and the need te
keep the documentatlon up-to-date and secure are sometimes at
cross-purposes ¥ with . one . anothér. Thus, it is recommended .
-’that as much documentat1on as practical also be kept on-lipe
“in documentation libraries which the'maintainer can access at"
- any time. Updatlng of this llbrary should be, controlled by a
~librarian. :

S
o

9.6LDn-line/Interaoti§e Change And Debug Facilities *

Interactive debuggingéprovides significant’ ntages over
the batch method "because of the convenie speed of
-fmod1f1cat1on. W1th interactive processing, the aimtainer
‘can- analyze the problem area, make ¢hanges to a test version
of the system, and test and debug the system immediately.
The: alternative, to submit a batch jaob to perform the
testing, requires much more time to complete. While in some-
~-instances this may ‘be 'necessary because of system size, or
‘resource requirements, most maintenance aetivities’ (1nclud1ng
perfective. . maintenance) are highly critical problems which
must Dbe addressed and solved as . quickly as possible,
Interactive ’‘processing _provides a cont1nu1ty which enables

//((‘greater concentration on the problem and quicker response to

the tests. ' ‘Although the -estimates of the increase 1in

productivity vary,: widely, it is clear that -there 1is a

substantial v1mprdvement ‘'when the 'maintaingr -has on-line
--interactive processing capabilities. ' ' -

¥ . o -

@23 -

'-_47 -) e h .

- - «

!

: []
- 4 — . - ’
'9.7fGenenat§on'And Retention Of Test Data
' N
3 Standardized Yrocedures (often developed in-house) for
“, 'generating and ‘retaining test data are recommended. One of
’ the ﬁerennial problems in software maintenance is the lack of
N test dates . While in most instances, test data are generated
by the*maintainer, studies have found that more errors and
e inconsistgncies . are uncovered when test data are prepared. by
the uiprf'and.testing is more effective if samples 'of the,
actual data are ipcluded in the test data.

Once 'a test data set -has been geperated -and the system
successflully rug against it, the data should be retained for.
. , use ‘'in future maintenance regression testings Regression
‘ testing i@ the -selective retesting of the ,gystem to detect
any faults which may have been introduced and to verify that

"the maintenance modifications have preserved the
functionality of the system. The system testing verifies
that the system prodyces the same results.and continues to
' meet .the requirements “specifications, In addition, ®the

results of the testing should be saved 4n machine readable
form so that the results of future maintenance testing can be
compared with the previous test results through the use of a
comparator. ' 5)

Although some -test” data set generators are commercially
available, .most are develobed either as part of the original
development effor't of a large system or As™ part of the
maintenance. effort. A test data generator is usually built

. fbr,a specific system and designed to test the system to a
selected. level " of detail. Guidance-on testing ds available
in several NBS/ICST publications [FIPS101], [NBS75], and
[NBS93]. . -

h

!

L J

*10.0 MANAGING SOFTWARE MAINTENANCE.

'The effective use of good management techniques and
methodologies in dealing with scheduling maintenances
negotiating with users, coordinating the maintenance staff,
and "instituting the use of the proper tools and disciplines
is ‘'essential to a successful software maintenance effort.
Software maintenance managers are responsible for making
decisions regarding the performance of software ‘maintenéhce;
assigning priorities to the requested work; estimating the
level of effort for a task; tracking the:progress of work;
and - assuring adherence to system standards in all phases of
the maintenance effort. A software maintenance manager must '
not ~only be a good technician, but also a good manager.
While this may seem to be an obvious point, it is, in actual
practice, far too often ignored.

There appears to be a common failure to recognize ,the
importance of the word "management" in the phrase''"software .
maintenance management", In many instances, technical
persons are promoted to positions of management within an
organization with the assumption that technical expertise 1is
rall that 1is required to manage effectively a software
maintenance operation. On the contrary, a software
maintenance function has the same organizational neéeds and

. managerial problems as any other function.

.

The primary duties of a software maintenance manager include:
1. Evaluate, assign, prioritize, and schedule
maintenance work requests.
Assign personnel to scheduled tasks. s//
Track progress of all mainftenance tasky and ensure
that they are on or ahead of schedule.\,
Adjust schedules when necessary.
Communicate progress and problems to the user.-
Communicate progress and problems to upper
management.
Establish and maintain maintenance standards and
guidelines.
g , Enforce standards apd make sure that the software
: . maintenance is of high quality.
9. Deal with problems and crises as they arise.
10. Keep the morale of the mainténance staff high.

o) -~ (0200 2 B w

This list -is not complete, but is sufficient to illustrate
the point that if the words ‘'"software maintenance" were
~deleted, it would simply be a list of management duties for
.any other organizational function. Thus, it is imperative
“that a, software maintenance manager be qualified both
technically and managerfally to hold such a position. If .the
person- is not, the ability to be an effective maintenance

- 49 -

Q » " , | ,‘ . 538

A

i

manager will be severely diminished.

Just as the importance of management skills has not Dbeen
recognized in the selection of many software maintenance

managers, in other instances the need ‘for technical

v 10.

maintenance expertise has not been addressed. While many of
the required skills involve dealing with and coordinating

people, the software maintenance manager also has the
responsibility to <control the technical aspects of the
process, Without a strong technical background and actual

experience in performing software maintenance, the . manager
may not be able to deal with the conflicting needs and
requirements of many maintenance tasks. :

The software maintenance manager should be aware of, and
familiar with, all of the work being performed by the
software maintenance staff. While this 1is not always
practical or possible in large organizations, each specific
application system must have a central authority who 1is
responrsible for controlling and coondinatihg the maintenance
of that system. Too often, a form of anarchy exists 1in
software maintenance organizations. The maintainers are not
adequately coordinated and are permitted to address problems
as they arise without adhering to established standards and
procedures. In the short term this may be the most effective
manner of addressing .immediate problems. The 1long term
consequences, however, are usually a decreased level of
maintainability for the system, and an increased need for
maintenance. This section discusses standards, guidelines,
procedures, and policies which will facilitate the management
of the software maintenance function -and will 1improve the
capability to maintain application systems.

1{Goals Of Software Maintenance Management

The goal of software maintenance management is to keep all
systems functioning and tq respond to all user requests in a
timely and satisfactory manner. Unfortunately, given the
realities of staffing limitations,: computer resource
limitations, and the unlimited needs and desires of “most
users, this goal is very difficult to achieve. The realistic
goal, then, is to keep _the software ‘maintenance process.
orderly and under control. The specific responsibility of
the software maintenance manager is to keép all application
systems running and to facilitate communication betyeen the
three groups involved with software mainténance. ’ :

g

b) o i £ .
The user must be kept 'satisfied that everighing posiible is
being done .to keep each system runningg.as efficiently and
productively as possible.. R 35 - _

b\ 2
)
B

- 50 =

59 .. .

10

Table 11 - Goals of Software Maintenance

1. Keep the maintenance pro@ess orderly and .
under control.

2. Keep the application systemé runnlng
3. Keep the users satlsfled.-
4, Keep the maintainers happy;f

5. Keep maintenance viewed as a positive aspect
of ADP - one which contributes to the meeting
of the goals of the organization; not some-
thing that has to be done because the ADFP
staff just dan't do it right the first time.

Upper management must be kept informed of the overall success
of the software maingenance effort and how software
maintenance supports and enhances the organization's ability
to meet 1its objectives. 1In dealing with upper, management,
one of the primary responsibilities of the sof tware
maintenance manager 1is to keep maintenance viewed 1in a
positive perspective. Software maintenance is an important
effort which supports and contributes to the ability of the
organization to meet its goals. Too -many of the problems
encountered in software ’‘maintenance are the result of the
negative attitude that it is a function which exists Dbecause
the software support staff can "never do it right". Rather,
the emphasis should be on 'the concept that software
maintenance enables an organization to improve and expand its
capabilities using existing systems. ’

Finally, the software maintenance manager has the

"responsibility for keeping the maintenance staff happy and

satisfied. Software maintenance must be thought of .as the
challenging, dynamic, interesting work it can be.

.2 Establish a Software Maintenanee Policy

A software maintenance policy should employ standards which

-describe 1in broad terms the responsibilities, authorities,

functions, and operations of the software maintenance -
organization. It should be comprehensive enough to address

- 51 -

60

any type of change to the software system and its
environment, including changes to the hardware, software and
firmware. To be effective, the policy should be consistently
applied and must - be supported and promulgated by upper
management to the extent that it establishes an
organizational commitment to software maintenance. When
supported by management, the standards and guidelines help to
direct attention toward the need for greater discipline in
software design, development, and maintenance.

The software maintenance policy must specifically a&ﬁress the
need and . justification for changes, the responsibility for
‘making-the changes,. the change controls and procedures, and
use of .modern.’ programming practices, techniques and tools.
It should describe-fidnagement's role and duties in regard to
software '‘maintengnce ~and define the process and procedures
for contfolli@g'qhahg¢SLt0;the software after the Dbaseline
has been established. - .i(Baseline refers to a ‘well-defined
base or configuration to which .all . modifications are
applied.) Implementatioen’ of: -the’:policy has the, effect of
enforcing adherence to rules‘régarding the operating software
and documentation from initiation through completion of the
requested change. Q&ce this is accomplished, it is possible
to establish the jlestones necessary to measure software
maintenance progress. Plans, however, are of little use if
they are not followed. Reviews and audits are required to
ensure that the plans are carried out. .
.The primary purpose of change control 1is to assure the
continued smooth functioning of the application system and
the orderly evolution of that system. The key to controlling
changes to a system is the centralization of change approval
and the formal requesting of changes. The software
maintenance surveys found that each successful organization
‘had a formal trouble report/change request process with a
single person or a change review board approving all
changes/enhancement requests prior to the scheduling of work.
When this is not dpne, the confusion which results from
~independent maintenance efforts is usually disastrous.

Everything done to software affects. its quality. Thus,
measures should be established to aid in determining which
category of changes are likely to degrade software quality.
Care must also be taken to ensure that changes are not
incompatible with the original system design and intent. The
degree to which a change is needed and its anticipated use
should be a major consideration. Consideration should also
be given the cost/benefit of the change: "would a new system
be less expensive and provide better capabilities?". The
policies establishing change control should be clear,
congise, well publicized, and strictly enforced.

-52‘-. ; 6‘1

“workload of the:request; the estimated. additional ' gomputing

‘should' be. ,rev1ewed and judged by either. the M softwareg
ma1ntenance manager or a change review board.: ‘%ﬂOlng 50 Wildry
reduce the amount "of ‘unnecessary and/or ungust1f1ed work
‘.whlch 1s often performed Onh.a system. : s

1. Review &nd’ evaluate all ‘requests for changes.
- The change must- be fully justified.
- The impact: on. other: work and users should be : ’ -
taken 1nto con31derat10n

2. Plan for. and schedule ma1ntenance
- Each change request 'should be assigned a pr1or1ty.
- Work should: b¢ -scheduled according to priority.
- The scheduled shouid be enforced and adhered to.
3

3. Restrfct eode changes to the approved/scheduled

‘ work . ,y.‘- BN .r-", i . 'e‘ K
H.:Enforce documentatlon and codLng standards through
"reV1ews and audlts L ﬁ_,l .

All user and staff requests for ‘changes5-to ang'appllcatlonifﬁ
system _(whether enhancements, preventive' malntenanqe,? or .’
‘errors) should: be requested in writing and . submitted .to, the
software malntenancg, ‘manager. - Each” change" request should e
include not only the . descr1pt1on of the- requested change, ‘but: -

c,.a0 full Justlflcatlon . of why - that. -cttinge, should bé'made. ™
' jThese -change requests should be carefiully. reV1ewed ~and "X

evaluated before any : actual work is pengormed on - the syatem.
The evaluatlon shbuld ‘take into conside atlon,”‘among otherj
things, the - staff resources available verssus the eStlmatedf

resources . which will. be required for thy deslgn, test debug;
and. operatlon of ‘the modified system; and the:. tlme and Ccost
of = updating -the documentatlon 0f course, some-- flex1bllltyﬂ
must be ‘built '1nto the process with some delegatlon <Of
authorlty “to’ 1n1t1ate critical tasks. However each requestl

. Al
9 -

e : - 33 -

10.

10.

10.

2.2 Plan for, .and schedule maintenance

The result of the review of all change requests should-be the
assignment of a priority to each request and the updating of
a schedule for meeting those requests. In- many ADP
organizations, there is simply more work requests than staff
resources to meet those requests. Therefore, all work should
be scheduled and every effort made to adhere to the schedule

rather than constantly changing course in response?gtdnﬁthe -

most visible crisis.

2.3 Restrict code changes to the appréved work

In many cases, espéciallyknhen the code was poorly designed
and/or written, ‘there’isva strong temptation to change other
sections of the code as long as the program has been "opened
up". The software maintenance manager must monitor the work
of the software maintenance staff, .and ensure that only the
authorized work is -performed. - In order to monitor

maintenance effectively, all activities must be documented.

Af;ggmbis includes everything from the change request form to the
-Ffingl ‘revised source.program listing. PN . '

e -

" Permitting software maintenance-staff to make changes other

than those authorized “¢an -.cause schedulés to slip and may
prevent other, higher priority qork from being completed on
time. It is very difficult to limit the work which is.dene

on a specific program, but it is imperative ‘to the overall. . !

success of the maintenance function to do so.

2.4 Enforce documentation and coding standards

Sb&e programﬁers ho not like foldbcument, some aré'_hot good
at it, but primarily, documentation suffers .because of too

“much~pressure—and-too-little time in the schedule to do it.

Proper and complete communication of necessary information
between all persons who have, are currently, and who will
work on the system is essential. The most important media

.for this communication is the documentation and the source

code..

It is not enough to simply establish standards for coding and
documentation. Those standards must be continually enforced
via technical review and examination of all work performed by
the software maintenance staff. In scheduling maintenance,
sufficient time should bé provided to fully update” the
documentation and to satisfy established standards and
guidelines before .a new assignhment is begun.

- 54 - 63

9

a

10.3 Staffing And Management Of Maintenance ersonnel

Selecting the' proper staff for a software maintenance project
is as important as the techniques and approaches employed.
There is some debate on whether ‘or not an organization should
have separate staffs for maintenance and development Many
managers have indicated that separate staffs can 1mprove the -,
. . effectiveness of both. However, the" realities of size,
e organization, budget and staff ceilings often preclude the
v establishment of,: séparate ma1ntenance»and development staffs.

Management must apply the same criteria to the ma1ntainers
that. "are .applied to software and systems designers or other
highly sought after professional positions., If an individual
is productive, -consistently performs well, =has a good
attitude, and displays 1n1t1at1ve, Y.it should “not matter
whether the project is development or maintenance. 'Recent
studies' on the motivation of programmers and analysts
[COUG82] 1indicate that- there are’ three major psychological..
factors that can impact:the attitude morale, .and general” -
perfprmance of an 1nd1v1dual , muuiy. : Ny _"Qﬁ;’,n”

'C the work must be con51dered worthwhile by a set of
values accepted by the ‘individual, as well as by the
standards employed- by the organizatioh 3&J2_ a

AR - the 1nd1vidual must feel a. responsib111 yffor his or
Lﬁ"}w,:1 her performance. Thére is a need to- f el personally,
E i a ccountable for the outcome of an effort
. N g
the ‘individual must be able to determine on.a regular
ba51s whether or not the outcome of his or her efforts
is satisfactory." g

When these factors are high the ind1v1dua1 is likely to have
a good attitude and be motivated.

Some organizations have attempted to improve mgorale and the
image of maintenance by simply vrenaming the maintenance
function. This is a superficial approach. It -does nothing
to change what “is 1in fact being done, or the way it is
perceived by the maintainer and supported by management, A
more positive approach is to acknowledge the importance and
value of good maintenance to the organization through career
opportunities, recognition, and compensatign,’

Often, a maintainer is responsible for large amounts of code,
much of which was developed and preViouSly maintained by
someone else. This code is .generally 6ld, unstructured, has
received ‘numerous patches, and is inadequately documented.
The potential for errors,- delays, and unhappy users 1is
considerable. Praise, thanks and recognition,K are often as

- 55 -

6;4 o

‘important as salary and challenging assignﬁenté in keeping
good analysts and programmers '

It is essent1a1 that work: a551gnments offer. growth potential.

Continuing education is required at all levels to ensure that
not only the maintainers, but the wusers, managers, and
operators ° have a thorough , understanding of Software
maintenance. Training should include: ~ programming
languages, standards and guidelines, operating systems, and
ut111t1es ' ' : - : ' : C -

There is a ‘common’ mlsperceptlon that ma1ntenance has “to be

~dull, tedious, non- creatlve work which offers little chance,:tﬁﬁ B
'for reward or advancement,: . This view can only"b; changed =~ .~
-through management 1n1t1at1ves. The ma1nta1ner 1s a critical,f.#&~f

part of the process -- the key to delivery- the ‘product
both iomlsed by management and de31red by “the users.
*Indeed the maintainer is jone of the most 1mportant members
of the',appllcatlon software staff. The 1mportance of
" maintenance; must be acknowledged in terms of both position
value and functlon

Some pointé to keep in mind when managing a software
maintenance .function are outlined in Table 13.

_}}“56 -) 65

1. Maintenance 1is as/lmportant as development;ééé Jf,k

-

PP T

just as dlfflcult and challenglng 3:.¥, N ‘f"'nlf-;

‘-

2. Ma1nta1ners should be hlghLy quallfled compet t n_ﬁ,," :
- dedicated professionals. The staff should incl ide™, Dy
. .both senior and junior. personnel Do’ hot'.short ,w%“"
. change maintenance. Don't isolate the maintenance **. ’
< staff., T o] - o '

3. Malntenance :should QQI be used as a tralnlng
ground where junior staff are left to :
"51nk or- sw1m" o & . s

"4, Staff members should be rotated so they are

" assigned tﬁ»both maintenance and developmen
It takes a .good devéloper to be a good ma1nta1ner,
and- conversely, it takes a good ma1nta1ner to be
.a good developer.)

, 5.-Good ma1ntenance performance ‘and good development
_performance should be equally rewarded.
6.uThere should be an empha51s on keeping the staff
»well trained. This will keep performance at an
optimum level and help to minimize morale
problems. _ L g k
7. Rotate assignments. Do not permit a'systemfor_a
. major part of a system to become someone's
s pr1vate domain. ’

- S S S S S S e S S R R R G R R e e R G G S S S me e e e e e

1.0 SUMMARY
'Whlle the - ICST survey ‘identified softWare malntenance problems
g'whlch were' both managerlal and technical in nature, management
Cis: clearly the most .important factor in improving the software
-maintenance -process. Most of the problems cited in the survey
-were the result of inadequate management control and review of
_software maintenance activities. Management muysmt take a closer
look at how the software is maintained, exercise better » control
over the process, and ensure that effective software maintenance

techniques and tools are employed. L

Récommendations ‘have been made in sections, 7.0 through. 10.0 of
this report .to help a manager gain better control, and to help
the malntalner improve the quality of the malntenance performed.
In order to& maintain control over the software maintenance
process ang td ensure that the maintainability of the sSystem
does: not deteriorate, it is important that software malntenance
be ant1c1pated and planned for. :

The quallty and ma%ntalnablllty of a ;software system often
decrease ’as the system grows older. This is the result of many
factors whlch taken one at a time, may not seem significant but
‘become. cumulatlve and -often result in a system which is very'
difficukt to maintain, 'Quality programming capabilities and-
- techniques are readily available. . However, wuntil a firm
- discipline is placed on how software malntenance is performed
.and that discipline is. enforced, many systems will be permitted
. to deteriorate to the point where “they are 1mposs1b1e to
“zmaintain. ‘ o . L
Software maintenance must be performed ~in a structured,
“controlled manner. It is simply not enough to get a system "up
and running" after it breaks. Proper management control must be
exercised over the entire process. . In addition to controlling
the budget schedule, and staff, it 1is essential thHat the
software maintenance manager control the system arfd the changes
to it. The now .frequently cited maxim that a system "must be
developed with maintenance in mind" is insufficient; a system
. also must. be ma1nta1ned with future maiptenance 1in mind. If
this is ' done, the quality and maintainability of the code
actually can improve. Otherwise, today's ‘maintainable systems’
are destined ‘to become tomorrow's unmalntalnable systems

< -

e . L A3 3) . N

—

' a_Conflguratlon Management: A Tutorial’n’cqmgutgc, January 1979,

. Engineer ring;, Vol SE-8, No 3, Mdy 1982, pp 270-283.

‘BIBLIOGRAPHY **

[ARTH83] L J. Arthur, gramm;gg Product1v1tv, John "wiley' and'

Sons, New’ York, 1983

[BASI82] 3 V;R.Bas1l1 and . H.D.Mills, "Understanding .- and %’? '
Documentlng © " Programs,™ - IEEE Iransactions on 'Seftware

[BERS79] E.H. Bersoff V.D.ﬁenderson, and. -S./G.Liegel, "Software';

f:;pp 6~14. - _ 3
2 ﬁ[BOEH78 B.W:Boehm, J.R.Brown, H.Kasper, M. Llpow, ' G.J.MacLeod,

“and : J:Merritt, baractecgstg cs : of Software anl;;y S
, ‘_Northuﬂolland Amsterdam New York Oxford 1978. -

,Eng; ggr;ng Vol SE-7, No 5, September 1981, pp 482- 493 i

'-:[BOEH82] ~B.W. Boehm,_‘~ _gftgare : E_glneg-;ng Eco ics, l", .
‘Prettice-Hall, Englewood Cliffs, 1982, : . - 3

V. A

[BOEH81] B, w Boehm,,"An Experlment 1n Small Scale Appﬁ1cat1on .
Software Englneer1ng " . ILEEE Transactions on gﬁtuacg

.[BRICB3] L. Br1ce and J. Connell "A Methodology for M1n1m1z1ng

“VMa1ntenance Costs," AFIPS" 9 3 National = Computer Conference -,l

"_Proceedlngs AFIPS Press, .Arllngton, -¥¢£g1n1a May 1983, pp-
'.113 121 S . . y

~University of Colorado, 1982. .. . b

[BROO?S] F.p. Brooks, 'bg Mythic al “Man Mgggh,* AddisonFWesley,;‘
Readlng, Massachusetts,f1975 ,,3f, ; o p', . .” ; ’- PR

. :-_.~:_

[BUCK77] J.K. Buckle, Managlng Software Proiects, MacDonalqv dﬂf

,Jane's London and Amerlcan Elsev1en‘Inc, New: Yorg, 1977

"JI

',[CENT82] J. w Center, np Qual1ty Assuﬂance ProgramieF%r Software

Maintenance, AFIPS 1982 Nat;onal Computer Confefence
Proceedlngs AFIPS Press, Arlington, ylrg1n1a,~ May 1?82 PP -
399—’407.) o ' ' 2. .«,{:\ , ‘ . « - - ,_u (!1
[CHAP83] N. Chapin, "Software Malntenance deectlves AEL :1983
National Computer C erence . Proceedlngs AFIPS , Press,.,*
Arlington,;V1rg1n1a, ‘May , PP 779 784 . VTR
.,[COOP79] J.D. Cooper and M J. Flsher, ed1tors,, S fLE§£§‘§ :f:ixﬁQf ;
Management, Petrocelli Books Inc. ,_1979 o SR A

-

[COouG82] D.J. Couger and M.A. Colter, "Effect of Task As31ghments o
on Motivation of Programmers and Analysts," research reporb 'f*

. , : ;B{:'"‘TA' va : "__ f'. . 1}_' ,;.‘j |
‘\ . . .) oo ‘.') . . .

~N

O

ERIC

Aruitoxt provided by Eic:

Pl

P b EAluCrALE, Yol DE-by NQ‘B{ Marcn 1979, pp 96-103.
S- i itr., J.0.haws and W.oAtkins, Managing .. the EDR
L Morae tlil, New Yorkd 1970w . o :
, . L ,
- T o
ranoo ang DoSwearinyger, "A Heview ‘of Software.
R Lennuiory, " ;Homc“ufﬁxr Development Center.,
S, Rerraary Swel. o
Lrtert, CubldEsyer, and b.Loeke, editors, Practice in
Lleptast o and cMaantenance, Lhorth-tolland, New York,
oot s M. Marcotty, "lmproving Program
', : Ait Mocivaicoation,' CACM, Vol 25, No 8, August
« " R b
-,
m me Umes tor Locumentation ot Computeér Programs and
Lo Cytenn, " NES O Federad koformation Processing
DLl athann 46, rebruary 1976,
P e aneen tor Lovumentation of Computer Programs and
Gt Cyrtens tor o bthe Inltlation Phase," NBS Federal
L P vanane Standards Fubiicstaon 64, August 1979.
W deline for latecyele Vaildotion, Verification, and
! cmputer Lottware, " Nis Federal lnformatien
. Carsards Pabilication 101, June 19873, .

PR

~ rr,
i ot
I+ y

PN R
Moy
c‘;er
\ .

VR (

[Jorod

St the

oo oandd PLoML lewrn, edibtors, Leftwa

et proee AL
St ot tioe, ARML-E1-20, February 20, 1981,

PRI

TV

3 [

10, S neprard, PoMilliman, M.A.Vorst, T.Love,

Poyeh plexity of Software Maintenance
i ten o ans Metazbte Metrices,"™ 1EEE Transactions

Wiley and

Gtoe, Critieal buouew Lo Luftware, Joh

<4 Englhesring,

TR O A R R 1Y

e b et ber Cpnqn;tvf Sottware Technolopy Can
croentl fontrol And keduce o Costs," Complroller
G tonpre s of tre Hnated Jrates, FGMOD=80=-38,

pent =Wl Gurdelines And o Manapement Aosistance
Sy stem:s bevelopment, " KReport by the

I

gl Mpencerest Marntenance Of Computer Programs:

Underratiaged, " Comptrol Ter fLeneral Feport, to
. ks . .)

Ui ted St ates, AFMI=ETLH D February 26, 19481,

—_— » ()' .(}

Al

[GLAS79] R.L.Glass, Software - Belia ability gg;gggg.x,
Prenfice-Hall, Englewood Cliffs, New Jersey,.- 1979.

(GLASBTa] R.L.Glass and R.A.Noiseux, Software Maintenances
GQuidebook, Prentice-Hall, Englewood Cliffs, New Jersey, 1981,

(GLAS81b4 R.L.Glass, Y"Persistent Software |, Enfors;"' IEEE
Transactions on.Software Engineering Vol SE-7, Mo 2, March 1981

(GLAS82] R.L.Glass, Modern Programmlng Pﬁacflces A Report From-
Industry, Prentlce Hall, Englewood Cllffs, New Jersey, 1982.

[(GREE81] J.F.Green, et al, "Dynamic @lanning andd Software
Maintenance - A Flscal Approach ".Naval Post Graduate School,
Dept. of Commerce, NTIS, 1981. , /.

(HALS7T7] M.H.Halstead, Elements of Software Sctenc Elsevier
801ence Publlshlng Company, New Yark, 1977. - '

[HAML]9] W.T.Hamlen, "Application Program Maintenance Study -
Report to Guide," Proceedings. of Guide ﬂﬁyv Max 1979, PP

1751-1758.

’

[HURLB2] R.B.Hurley, - Dec;§;9n Taples in §_£Lxgrs_ Eng;nsgzing

Van Nostrand Reinhold, New York, 1982.
’ l"

[JENSTY] R.W.Jensen and C.C. Tonles, Software 'ggginggning,
Prentice-Hall, Englewood Cliffs, few Jersey, 1979.

-
-

[JONETEa] R.A.Jones, "Maintenance Considered Harmful," ACM L
Forum, CACM, Vol 21, No 10, October 1978, p 882. 74
[LEHMT77] M.M.Lehman;”“Evolution Dynamics - A.'Phénomenology of '

Software Maintenance," P[ogggging§_ of Software, Life Cycle
- Management Workshop, August 1977, pp 313-323.

:[LTFNYBJ B.P.Lientzy E.B.Swanson, and G.E.Tompkins,
"Characteristics of Appllcatlon Software Maintenance," CACM, Vol
21, No 6, June 1978, pp uU66-471.¢

(LIEN7T9] B.P.Lientz and E.B.Swanson, "Software Maintenance - A
User/Management Tug-of-War," " Data Management, . April 1979, pp 7
26-320. . h . ‘ '

[

[LIEN8O] B.P.Lientz and E.B.Swanson, Software Maintenance.
Management, Addisop;!esley, &‘ading, Mazéachusetts, 1980.

(L1ENE1] B.P.Lientz and E£.B,Swanson, "Problems in Application

Software Maintenance," QAQMl Vol 24, No 11, NOvember 1981, pp
T63-769. . ' ' . . . '

- 61 -

~3
Q ¢

3

-

IR
[LYONB1] M.L.Lyons "Salvaglng Your Software Asset (Tools Based

_ Magntgnancel)", AF4PS 1981 National Computer Conference .
' 5 Qggeg;glg, AFIPS Pre§s, Arlington, Virginia, May 1981, pp?
-337m342, ‘, o) ..
'Y . -
[MARS83] MqL Marse&os + "Human Investment Techniques for
Effectlve Soft are Malntenance AFIPS 1983 National Computer
Conference Pro s, AFIPS Press, Arlington, Virginia, May .*
1983, *pp 131- 136' , , « . , -
. ' *
]
[MARSH83] R. E Mérsh "Appllcatlon Maintenance: One Shop s
‘ Experlence afnd Organlzatlon n- AFIPS 1983 “Na tlonal mgutgr
Conference Proceedings, AFIPS Press, Arlington, Wirginia, May
1983 ,RP 145-153~ .o : :
[MART83] JeMartin, C.McClure, Software Maintenance = THe Problem
and Its olutggn§ Prentlce Hall, Englewood Cllffs, New Jersey,-
1983 . g '
[MART82] d.Martin, Applicagion Development Without * Programmers,
Prentice Hall, Englewood Cliffs, New Jersey, 1982 N :
» .
[MC@L81] C.L.McClure, Managing ;Sofiware . _g velo gme nt and
glgtenag ey VanmNostrand Reinhold, New York 1981 .
[MYLL79] E. M111er, ﬂuton; al % Autd mg&gg Tools for UnﬁLﬂa_ﬁ
Engineering, IEEE Computer S001ety Press, Silver? .3pring,
Maryland 1979 . A o)
N ~ . . :
[MILL81]'H D. Mllls, Software&Productlvltl, Little Brown and Co, .
1983.¢ \ .
< Y v .

. - : b s
[MUNSB81] J.?.Muqson,q'"Software Ma1nta1nab111§y ‘A Practjcal
Concern for Life-Cycle. Costs," Computer,- Vol 14, Nov 1981, pp
103 109 - _ S : :

5 I , . .
[MYER76] ' G.J.Myers, Software 'R lia;;gggy: Priciples and ©
Practices, John W11ey and Sons, New Y%rk 1976. e
T hYERT9) G.J.Myersh ng@_ rt of Qoftware Igé;_;.ng, John Wlley and
Sons, . New: York, 1979 % . ﬁ

,L . (.

[NAVET9] WComputer Software Llfe Cycle Management Gu1de " Naval
Electronics Systems Command NAVELEXINST 5200. 23,'Manqp 1979)

[NBS75] W.R.Adrion, M. A.Branstad and 4.C.Chern¥avsky,
"yalidation, Verlflcatlon and Testlné'of Comput®r Sthwaﬂb,"gﬂi,
Special ELLDLLQQLL,H L_ -75, February 1981 _ :

- . <
[NBS8T]. A.JiNeumann, "Management Gu1de For _ " Software
Documentation,". Nﬂ§‘_Q§C]§1 Publication 500 8] January 1982. 1.
.] N v '
X ca . «®
- 62 - s N
7 .

[¢]

‘{NBS93] P.B.Powell, edifor, "Software Validation, Verificatign

and Testing Technique and Tool Reference Guide," NBS Special
Publication 500-93, September 1982. . '

[NBS98] P.B.Powell, editor, "Planning For Software Validation,
Verification "and "Testing," NBS Special Publication -500-98,
November 1982. ; S .

[PARI83] G.Parikh, N.Zvegintzov, Tutoriel on Software
Maintenance, IEEE Computer Society Press, Silver Spring,
Maryland, 1983. . :

—

[PARIBO] G.Parikh, editor, Techniques of Program and System
Maintenance, Ethnotech, Lincoln, Nebraska, 1980.

[PEER81] D.E. Peercy, "A Software' Maintainability .Evalualtion

Methodology," IEEE TIransactions 0On Software Engineering, Vol
SE-7, No 4, July 1981, pp 343-351. .. ‘

" [PENN80O] R.H.Pennington, "Software Developnent and Maintenance -

Where Are WE?," Proceedings COMPSAC80, IEEE Computer Society's
Fourth International Computer Software . and AQQLA_QLLQQ
QQQ£§£§Q£§4 19807 pp 419—422,

[PERR81] W.E.Perry, Mahaging Systenm ugin;ggggcg, Q.E.D.
Information Sciences, Inc., Wellesley, Massachusetts, 1981.

[PRES82] R.Pressman, Software Egg_meec;ng: ‘ Practioner's
Approach, McGraw Hill, New York 1982 .
)

[RAYN83I R.J.Raynor : and L.D.Speckmann, "Maintaining User
Particigation' Throughout the Systems Development Cycle," AFIPS
1983 National Computer Conference Proceedings, AFIPS Press,

Arlington, Virginia, May 1983, pp 173-180.

"[REIF77] D.J.Reifer and S.Trattner, "A Glossary of Software

Toolse and Techniques," Computery Vol 10, No 7, July 1977, pp.
. 52~-60. - ' : N

.

[RICH83] G.L. Richardson and C. w Butler, . "Orgakizational Issues
of °Effective Maintenance Management m AFIPS ."1983 National

"Computer . Conference Proceedings, - AFIPS Press, Arlington,

Visginia, May 1983, pp 155-161. o

-

[SCHN79] ,N.F.Schneidewind, H.M.Hoffman,. "An Experiment In
Software Error Data Collection And Analysis," LEEE Transactions

.on Software Engineering, Vol SE-5, No 3, May 1979, pp 276-286.

[SCHN83] G.R.Schneider, ‘"Structured Software Maintenance," AFIPS

1983 Natiohal Computer Conference Proceedings, AFIPS Press,
Arlington, Virginia, May 1983, pp 137-144.
: - : [.

N .V » .;”63*—_2 ; 7£?

;

|] t

o 2
[SHNES8O] B.Shneiderman, Software Psychology, Winthrop

Publishers, 1980.)

[SWAN76] E.B.Swanson, "The Dimensions of Sof'tware Maintenance",

- IEEE Computer Society, Proceedings of the 2nd International
Conference on Software Engineering, October 1976, pp 492-497.

[TAUT83] B.J.Taute, "Quality Assurance and Maintenance
Application Systems," AFIPS 1983 National Computer C renc
Proceedings, AFIPS ess, Arlington, -Virginia, May 1983, pp
123-129. r‘m

(THAY81] R.H.Thayer, A.B.Pyster, and R.C. Wbod M"Major Issues in

Software Engineering Project Man gement " ;ggg Transactions aqn
Softwa rgﬁE gineering, Vol SE-7, Ngfu, July 1981, pp 333-342.

[TINN83] P.C.Tinnirello, "Improv1ng Software Mainténance

Attitudes," AFIPS 1983 Na L;gggl omputer Conference Proceedings,
AFIPS Press, Arlington, Virginia, May 1983, pp 107- 112.

[WALK81] M.G.Walker, Managing Software Reliability - The
Paradigmatic Approach, N_LLh.H.A;;nQ4.N_ﬂ York, 1981
[WEIN72]1 G.M,Weinberg, The Psychology of Computer Ezggx_mmin&,

Van Nostrand Reinhold, New York, 1972.

[YAU78] 'S.S.Yau, J.S.Collofello, and T.MacGregor, "Ripple Effect

Analysis of Software Maintenance," IEEE Proceedings of COMPSAC
8, 1978, pp 60-65.

[ZAK83] J.R.Zak, "When a Data Processing Department Inherits

Software," AFIRS 1983 National Computer Conference Proceedings,
AFIPS Press, Arlington, Virginia,. May 1983, pp 163-172.

[ZELK78] M.V.Zelkowitz, "Perspectives on Software Engineering,"
Computing Sur , Vol 10, No 2, June 1978, pp 197-216.

[ZELL83] L.Zells, "Data Processing Project Management: A
Practical Approach for Publlshlng a Project ° Expectatlons

Document,"™ AFIPS 1983 National C omputer Confer gé Proceedings,
AFIPS.Press Arlington, Virginia, - May 1983, pp 81#187»»h

Q_L§m~5;gn August 1983, pp

[ZVEG83] N.Zvegintzov, "Nanotremds, fii

106-116. | @%@

APPENDIX I

Software Maintenance-Definitions

L]
N _ _
"Software malntenance in 1its broadest sense, 1includes error
corrections, changes(also called modifications or amendments),

enhaﬁcements and. improvements to the existing software,. It
includes maintenance of all séftware, including structured
(software developed using ~structured technologies) and
unstructured software (software developed without...)." -

Girish Parikh,"World of Software Maintenance"

%%?BLQ_.&_& _f_ Program g_n.g Systém Maintenance,

.

~ Maintenance i% "the process of ,modifying existing operational
software while leaving 1ts prlmary functions intact.

3

Barry Boehm, "Software Maintenance",
IEEE Transactions on §9.£&M.ax:s Engm.eg_l:;ng,
December, 1976.

&

"Maintenance 1s the gont1nu1ng process .of keeplng the program'
running, or 1mprov1ng its charaterlstics"

J L. Odgeh *"Designlng Reliable Software,"
reprinted in [PARI81]

. P

"Most generally,:it is the* proce§s”3f%adaption, i.d., updating
existing . systems functlons tb; reflect 'new constraints or
add1t10na1 features,) *. e : :

Chester Liu,, "A Look At goftware Malntenance"
reprinted in [PARI81]

—

.

"Tradltlonally, program malntenan%e has been viewed-as a second
class activity, w1th an -<@dmixture of on-the-job training for
beginners and-of low=-status a551gnments for the outcasts and the
fallen, ” nooo .
: Rlchard:Gunderman, "A Glimpse into Program
Maintenance", reprinted in [PARI8?T] .

-65 _.'

a
. y

"Maintenance is the process of belngwrespon51ve .to user needs -
f1x1ng errors, maklng user speclfled mod1f1cat10ns, honing the '
program to be more useful N . S , '
"Software ma1ntenance....1s the act of taklng a softwaré product
that has already been delivered to.a customer and 'is. in use by
him, and keeping it functlonlng 1n a satlsfactory way " 1B

R.L.Glass and R.A. N01Seux, Software = o ,”.,«J f’. Ve
_amtsnang.e G.m_dgb.o_qx 1981 ' . o 4
E - B e
. R T e

R al .
"Systems maintenance 1ncludes any act1v1ty needed to ensure that o
application programs remain in sat1sfactory worklng condltlon."_ v
(W.E. Perry, jﬁagms §mgm§ Ma;ntgnaggg 1981 R
- o ’ ’ S f . ‘ ; : - ‘J- N .

", ..changes that have to~ be made to. computer programs after they
have been delivered to the customer or. user

;.\

James Martin- and Carma McClure §gﬁ&uggg i 67 ‘0
%%%Lepaggg mmmmmmuma

"The maintenance of softwarenlncludes two maJQ’g;:j:“ - the

Werner S Frankr g:i tical l§§_g§ i
A Guide %9 ‘Software:
Profitability, 1983%

b4
A

, 1 " -
Jone - .
o 3
. . ,2“"1; ' “
e 4 "*?2 . . ! i N
- R ¥4
Y e N)
B I8 . 'Y ‘
, : ‘ ‘o
. . % < '
T . .
- ,.!._ : . ': i . . / . .,
" N L] : i
W) v 32 ’ N :’\
- o o U 1 R
Y,) » .t NRay
B h - . ., f % - " A
- Lo , ;‘,{) ' Ju 66 EAN 7 g § S o
Q] e ¢ ‘r L C 5’&"' Iﬁl; 1 ‘ ’ - Y D S s_{' t',\ 'iﬂ
, L, SRR ;4% I A L > o ALY
E l C 2 - oo 4 ! P sy
. v -] ¢A¥ 4

P s v SRS o A A i v TR S o

ERI

!
e oo

Uis oert or comm. |1, PUBLICATION OR 2. Performing OF
REPQRT NO. !

3IBLIOGRAPHIC DATA .

HEET (See instructions) NBS SP 500-106

ITLE AND SUBTITLE Lomputer Science and Technology:

Guidance on Software Ma1ntenance .

WUTHOR(S) . ‘ _
Roger'J. Martin and Wilma M.*Osborne

’ERFORMING ORGANIZATION (If joint or other than NBS, see instructions) =

IATIONAL BUREAU OF STANDARDS

JEPARTMENT OF COMMERCE
IASHINGTON ouc,zozao -

a,

po~som~c ORGANIZATION NAME ANO COMPLETE ADDRESS (Street, City, s:&f.
Nat1ona1 “Bureau of Standards o oo
Department of Commerce ' B P
wash1ngton, DC 20234

‘sww’,‘.
N .

SUPPLEMENTARY NOTES I

[Documem descrlbes a compu(er p(ogram SF 185, FIBS Software Symmary. is- auachcd

4BSTRACT.(A .200-word or Jess. fagtugligammary of most s:gnlhcam mformauon
J:bI:ography or’ I:tera(ure Survey.Jmerran:t here)

This report addresses;1ssues and prob]ems of software; ma1n éﬁance and suggests
act1on§Pand procedures whkch can help. software ma1nte§§§ﬁr or
the grou1ng demands bf m&:nta1n1ng existing systems:. s“Thesre
a,Wirking .définition for software maintenance and ¥
,cqrrent prob?ems and issues in that area. Toodd A ¥
used to -improve the’ control of- software. ma1ntenan¢e¢. tivities and the
product1v1ty of a software maintenance organizati@iiare discussed. Emphasis
Js ‘placed on the need for:strdfg, effect1ve techn €1 management control of

the software ma1ntenance process. o A
4 - . . o - . o,
n - T . ? . A - o

3

N

.'4
PN PN

& -2")

. ‘.'_ P :},"l ; a
i f\
I 5
. A S gl
‘ Ps \ SN . & . . F"“N 3 v . ,
KEY WORDS (Six to twelve. emr:es-?olphabeucal order; cap:tal:ze &)‘Iv aranar —nmes: 0""’ "npraw kev worde e camicnlons)
..adaptive ma1nteﬁanre- corrective maintenance; managemen perfect1ve maintenance;
E softwareﬁeng1neer1ng,‘software maintenance; software ma1 tenance management
. softwar@'ma1nf/panceftools D .
AVATLABILYTY & 1 /7 e . o4 No. OF
N R ‘ : R PRINTED PAGES
[)(.] Unhm»ted ’ f_va‘\ ’. / ol » oo Sl o4 . ,
(1 For Offlcnal plsm.bylilbn Do Not Release to NTIS : 7] -
{)d%ﬁ 'Fr'o-m Supeilmtendentb]of Documents, U.S. Government»Prmting Offuce Washmg.ton D. C 15 Price
l’ d¥der From Naudzé')\ Techmcal Information Service (NTIS) Sprnngfleld VA. 22161 .
Ty 1 v : e C USCOMM-DC 8043-P80

SE ¥ g

ANNOUNCEMENT OF NEW PUB

, LICATIONS ON.
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,
Government Printing Office,
Washington, DC 20402

3
Dear Sir: . et
S
. -2 %
' Please add my name to the announcement list of new publications to be issued in the
series: National Bureau of StandardgSpecial Publication’ 500-.
R ' T :
& Name ‘ S .
- , p] -
Company ' '
.. AY
% - Addigss -
T . : .
¢ ook Ciy i State Zip Code
(Notification key N-503)
® 3
1
@-‘A)
t
e
L
*

ard

-T2

O

ERIC

Aruitoxt provided by Eic:

———

2 Nautional Burcau of Standards reports NBS™esearch und develop- ..

. NBS TECHNICAL PUBLICATIONS

PERIODICALS
JOURNAL OF RESEARCH—The Journal of Research of the

ment in those disciplines of the physical and engineering sciences in
which the Bureau is active. These include physics, chemistry,
enginecring. mathematics, and computer sciences. Papers covet a
broad range of subjects, with major emphasis on measurement
methodology dnd the basic technology underlying standardization.
Also includdd from time 10 time are survey articles on topics
closely related to the Bureau's technical and scientific programs,
As a sncu.n&scrvwc 1o subscribers each issue contains complete
citations to all recent Bureau publications in both NBS und non-
NBS nedia Issued six umes a year. Annual subscription: domcsl;&
$18: foreign $22.50 Sipgle copy. $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs—Mujor contributions to the technical literature on
various subjects related 1o the Bureau'ssscientific ind technicat ac-
usies

Handbooks—Recommended codes of engineering and industrial
practice (including safety codes) developed in cooperation with in-
lerested indusines, professional orgum/ull()ns.

. td

hodru

Specml Publications—Include proceedings of conferences spon-
sored by NBS, NBS annual reports, and other special publications

appropniate to this g grouping such as wall Lh.lflS pocket Ldrds und
bibhographies .

Applied Mathematics Series—Mathematical tubles, manuals. and.

studies of " special interest to physiaists, engineers, chemists,
brologists, mathematicians, computer’ programmers,

engaged in saienufic and techmical work.

* Natianal Standard Reference Data Series— Provides quantitative

dirg on the physical wnd chemical properues of materials, com-
pllLJ drom - the world's Iiterature and cntcally evaluated.
[)L\Llnpmi under 4 worldwide program coordinated by NBS under
the authonity of the National Standard Duta Act (PublIL‘LJ“
90-396)

NOTE: The principal publicaton outlet for the forcgomg data s
the Journal of Physical and Chemical Reference Daga (JPCRD)
published quarterly. for NBS by the American Chefnical Society
(ACS) and the Amenican Institute of Physics (AIP). Subscriptions.
reprints, and supplements avaitable from ACS, 1§55 Sixteenth St..
NW., Washington, DC 20056 :

-

- Building Science Series—Disseminates

und regulatory.

and others.
" PUB)—Publications 1n

. -

£

lcchh?cul information
developed at the Bureau on building materigls, components, .
systems, and whole structures. The serics presents research results,
test methods, and performance criteria related to the structural and
-environmental functions and: the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-
selves but restrictive in lhmr treatment of a subject. Analogous to
monographs but not sd comprehensive in scope or definitive in
treatment of the subject ared. Often server as a vehicle for final
reports of work pyrformed at NBS undcr the'sponsorship of other
t_ovcrnmcnl agencies.

Voluntary Product Standards—Developed under procedures
published by 'the Departiment of Commerce in Part 10, Title 15, of
the Code .of Federal Regulations. The standards establish
nationally recognized requirements for products, and provide all
concerned interests with a basis for common understanding of the
charactenstics of the products” NBS administers this program as a
supplement o the activites of lhc private sector Sl.xnd.xrdlllng
orgamzations.

Consumer lnformntion ‘Series—Practical information. based on
NBS reseurch and experience, covering areas of interest to the con-
sumer. Easily understandable lunguage and illustrations providc
useful background knowledge for shopping in lod.w s ‘tech-
nological marketplace. i

Order the above VBS publu'ummi,[mn‘)’ Superinlendem of Docu-
ments. Government Prinung Qffice. Washington, DC 20402
Order the following N BS publications—FIPS and NBSIR
the National Technical In/unnalmn Service, Springfield, ¥

—from

Federal Information Processmg Standards Publlcnuons (FIPS
this scries collectively” constitute the
Federal Information Processing Standards Register. The Register

-serves as the official source of informauon in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Fedzral
Praperty and Administrative Services Act of 1949 as amended. -
Public Law -§9-306 (79 Stat. 1127). and as implemented by Ex-
ccutive Order 11717 (38 FR 12315, duted May |1, 1973) and Part 6
of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interimeor
final reports on work performed by NBS for outside sponsors
(both: government and non- government). In general, initial dis-
tnbation 1< handled by the sponsar: public distribution is.by the
Natonal Technical Information Service | Springfield, VA 22161,
in paper copy or microfiche form.-

!

3

